10
G. K. DASARI ET AL.
X.; Fu, Y.; Wang, X. Synthesis of Rice-Husk-Carbon-Supported
Nickel Ferrite Catalyst for Reduction of Nitrophenols. J. Nanosci.
Nanotechnol. 2019, 19, 5838–5846. (e) Ibrahim, I.; Athanasekou,
C.; Manolis, G.; Kaltzoglou, A.; Nasikas, N. K.; Katsaros, F.;
Devlin, E.; Kontos, A. G.; Falaras, P. Photocatalysis as an
Advanced Reduction Process (ARP): The Reduction of 4-
Nitrophenol Using Titania Nanotubes-Ferrite Nanocomposites. J.
Hazard. Mater. 2019, 372, 37–44. (f) Moslehi, A.; Zarei, M.
Application of Magnetic Fe3O4 Nanoparticles as a Reusable
Heterogeneous Catalyst in the Synthesis of b-Lactams
Containing Amino Groups. New J. Chem. 2019, 43,
Ghomi, J.; Akbarzadeh, Z. Ultrasonic Accelerated Knoevenagel
Condensation by Magnetically Recoverable MgFe2O4
Nanocatalyst: A Rapid and Green Synthesis of Coumarins Under
Solvent-Free Conditions. Ultrason. Sonochem. 2018, 40, 78–83.
(g) Patil, J. Y.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
Cerium Doped MgFe2O4 Nanocomposites: Highly Sensitive and
Fast Response-Recoverable Acetone Gas Sensor. Heliyon. 2019,
5, e01489. (h) Baby, J. N.; Sriram, B.; Wang, S.-F.; George, M.
Effect of Various Deep Eutectic Solvents on the Sustainable
Synthesis of MgFe2O4 Nanoparticles for Simultaneous
Electrochemical Determination of Nitrofurantoin and 4-
Nitrophenol. ACS Sustain. Chem. Eng. 2020, 8, 1479–1486. DOI:
6. Saire-Saire, S.; Barbosa, E. C. M.; Garcia, D.; Andrade, L. H.;
Garcia-Segura, S.; Camargo, P. H. C.; Alarcon, H. Green 15. (a) Jia, C.-J.; Liu, Y.; Schwickardi, M.; Weidenthaler, C.;
Synthesis of Au Decorated CoFe2O4 Nanoparticles for Catalytic
Reduction of 4-Nitrophenol and Dimethylphenylsilane
Oxidation. RSC Adv. 2019, 9, 22116–22123. DOI: 10.1039/
Spliethoff, B.; Schmidt, W.; Sch
u€th, F. Small Gold Particles
Supported on MgFe2O4 Nanocrystals as Novel Catalyst for CO
Oxidation. Appl. Catal. A. 2010, 386, 94. (b) Zheng, B.; Wu, S.;
Yang, X.; Jia, M.; Zhang, W.; Liu, G. Room Temperature CO
Oxidation over Pt/MgFe2O4: A Stable Inverse Spinel Oxide
Support for Preparing Highly Efficient Pt Catalyst. ACS Appl.
Mater. Interfaces 2016, 8, 26683. (c) Moura de, E. M.; Garcia,
M. A. S.; Gonc¸alves, R. V.; Kiyohara, P. K.; Jardim, R. F.; Rossi,
L. M. Gold Nanoparticles Supported on Magnesium Ferrite and
Magnesium Oxide for the Selective Oxidation of Benzyl Alcohol.
RSC Adv. 2015, 5, 15035. (d) Hassanzadeh, S.; Eisavi, R.;
Abbasian, M. Preparation and Characterization of Magnetically
Separable MgFe2O4/Mg(OH)2 Nanocomposite as an Efficient
Heterogeneous Catalyst for Regioselective One-Pot Synthesis of
b-Chloroacetates from Epoxides. Appl. Organometal. Chem.
2018, 32:e4520. (e) Rahmanivahid, B.; Pinilla-de Dios, M.;
Haghighi, M.; Luque, R. Mechanochemical Synthesis of CuO/
MgAl2O4 and MgFe2O4 Spinels for Vanillin Production from
Isoeugenol and Vanillyl Alcohol. Molecules. 2019, 24, 2597. (f)
Ramos-Ramꢀırez, E.; Tzompantzi-Morales, F.; Gutiꢀerrez-Ortega,
N.; Mojica-Calvillo, H.G.; Castillo-Rodrꢀıguez, J. Photocatalytic
Degradation of 2,4,6-Trichlorophenol by MgO–MgFe2O4
Derived from Layered Double Hydroxide Structures. Catalysts.
2019, 9, 454. (g) Godlyn Abraham A.; Manikandan A.;
Manikandan E.; Vadivel S.; Jaganathan S. K.; Baykal A.; Sri
Renganathan P. Enhanced Magneto-Optical and Photo-Catalytic
Properties of Transition Metal Cobalt (Co2þ Ions) Doped Spinel
MgFe2O4 Ferrite Nanocomposites. J. Magnet. Magnet. Mater.
2018, 452, 380–388. (h) Kamzin, A. S.; Das, H.; Wakiya, N.
Magnetic Core/Shell Nanocomposites MgFe2O4/SiO2 for
Biomedical Application: Synthesis and Properties. Phys. Solid
16. (a) Torborg, C.; Beller, M.; Recent Applications of Palladium-
Catalyzed Coupling Reactions in the Pharmaceutical,
Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal.
2009, 351, 3027–3043. (b) Devendar, P.; Qu, R.-Y.; Kang, W.-M.;
He, B.; Yang, G.-F. Palladium-Catalyzed Cross-Coupling
Reactions: A Powerful Tool for the Synthesis of Agrochemicals.
7. Dutta, M. M.; Talukdar, H.; Phukan, P. CuI Incorporated Cobalt
Ferrite Nanoparticles as a Magnetically Separable Catalyst for
Oxidative Amidation Reaction. Dalton Trans. 2019, 48,
8. (a) Hajalilou, A.; Mazlan, S. A. A review on preparation techni-
ques for synthesis of nanocrystalline soft magnetic ferrites and
investigation on the effects of microstructure features on mag-
netic properties. Appl. Phys. A 2016, 122, 680. (b) Ortiz-
~
Quinonez, J.-L.; Pal, U.; Villanueva, M. S. Structural, Magnetic,
and Catalytic Evaluation of Spinel Co, Ni, and Co–Ni Ferrite
Nanoparticles Fabricated by Low-Temperature Solution
Combustion Process. ACS Omega. 2018, 3, 14986–15001 DOI:
9. Fino, D.; Russo, N.; Saracco, G.; Specchia, V. CNG Engines
Exhaust Gas Treatment via Pd-Spinel-Type-Oxide Catalysts.
10. Rashad, M. M. Magnetic Properties of Nanocrystalline
Magnesium Ferrite by Co-Precipitation Assisted with Ultrasound
Irradiation. J. Mater. Sci. 2007, 42, 5248–5255. DOI: 10.1007/
11. Senapati, K. K.; Roy, S.; Borgohain, C.; Phukan, P. Palladium
Nanoparticle Supported on Cobalt Ferrite: An Efficient
Magnetically Separable Catalyst for Ligand Free Suzuki
Coupling. J. Mol. Catal. A Chem. 2012, 352, 128–134. DOI: 10.
12. Govha, J.; Bala Narasaiah, T.; Kumar, P.; Shilpa Chakra, C.
Synthesis of Nano-Magnesium Ferrite Spinel and Its
Characterization. Int. J. Eng. Res. Technol. (IJERT). 2014, 3,
1420.
13. Maensiri, S.; Sangmanee, M.; Wiengmoon, A. Magnesium Ferrite
(MgFe2O4) Nanostructures Fabricated by Electrospinning.
Nanoscale Res. Lett. 2009, 4, 221–228.
14. (a) Bououdina, M.; Al-Najar, B.; Falamarzi, L.; Judith Vijaya, J.;
Shaikh, M. N.; Bellucci, S.; Effect of Annealing on Phase
Formation, Microstructure and Magnetic Properties of MgFe2O4
Nanoparticles for Hyperthermia. Eur. Phys. J. Plus. 2019, 134,
84. (b) Erdawati, E.; Darsef, D, Synthesis of Magnesium Ferrites
for the Adsorption of Congo Red from Aqueous Solution Using
Batch Studies. IOP Conf. Ser. Mater. Sci. Eng. 2018, 335, 012024.
(c) Arun Kumar, N. S.; Ashoka, S.; Pandurangappa, M. MgFe2O4
Nanoparticles Synthesis and Characterization: Application to
17. Zhang, F.; Niu, J.; Wang, H.; Yang, H.; Jin, J.; Liu, N.; Zhang, Y.;
Li, R.; Ma, J. Palladium Was Supported on Super Paramagnetic
Nanoparticles: A Magnetically Recoverable Catalyst for Heck
Reaction. Mater. Res. Bull. 2012, 47, 2, 504–507. DOI: 10.1016/j.
Trace Level Mercury(II) Measurement from Waste Water 18. Rathi, A. K.; Gawande, M. B.; Pechousek, J.; Tucek, J.; Aparicio,
Samples. Mater. Res. Express. 2019, 6, 125049. (d) Abdellah, W.;
C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma,
R. S.; Zboril, R. Maghemite Decorated with Ultra-Small
Palladium Nanoparticles (c-Fe2O3–Pd): Applications in the
Heck–Mizorokiolefination, Suzuki Reaction and Allylic
Oxidation of Alkenes. Green Chem. 2016, 18, 2363. DOI: 10.
-
Ezzat, A; Samir, I. Removal of Pertechnetate (99TcO4 ) from
Liquid Waste by Magnesium Ferrite (MgFe2O4) Nanoparticles
Synthesized Using Sol-Gel Auto Combustion Method. Open J.
Appl. Sci. 2019, 9, 68–86. (e) Ali, N. A.; Idris, N. H.; Din,
M. F. M.; Mustafa, N. S.; Sazelee, N. A.; Halim Yap, F. A.;
Sulaiman, N. N.; Yahya, M. S.; Ismail, M. Nanolayer-Like- 19. Jadhav, V. G.; Bhojane, J. M.; Nagarkar, J. M. Palladium on
Shaped MgFe2O4 Synthesised via
Method and Its Catalytic Effect on the Hydrogen Storage
Properties of MgH2. RSC Adv. 2018, 8, 15667–15674. (f) Safaei
a
Simple Hydrothermal
Manganese Ferrite: An Efficient Catalyst for One Pot Synthesis
of Primary Amides from Iodobenzene. RSC Adv. 2015, 5,