Electron-Transfer Oxidation of Lipshutz Cuprates
coupling reagent is known as the Ullmann reaction.5 Since the
original Ullmann reaction6 was reported in 1901 using metallic
copper as the coupling reagent, a number of Ullmann-type
couplings using activated metallic copper,7 copper(I) salts,8 and
copper(II) salts9 have been utilized for aryl-aryl bond forma-
tions. Diarylcopper(II) species prepared from arylmetals with
copper(II) salts are known to decompose at low temperature to
afford biaryls.9,10 The reaction requires a transmetalation of
arylmetals such as aryllithiums, arylmagnesium halides, and
aryltin(IV) species with copper(II) salt,11 followed by reductive
elimination of the organic copper(II) intermediate. In contrast,
an oxidative “decomposition” of organic cuprates (R2CuLi) with
oxidants is a promising method for the homocoupling of the
ligands (R) on the copper atom. Casey and co-workers10a
reported this type of biaryl synthesis using the reaction of
diarylcopper lithium with molecular oxygen.
In 1981, Lipshutz and co-workers reported a novel cuprate
prepared from 2 equiv of lithium reagent with 1 equiv of CuCN,
the so-called “Lipshutz cuprate” (R2Cu(CN)Li2).12 This cuprate
has been reported to be an effective reagent for substitution
reactions of alkyl halides and conjugate additions to R,â-
unsaturated ketones.13,14 Furthermore, oxidation of Lipshutz
cuprates with molecular oxygen forms coupling products via
ligand coupling on the copper atom.15,16 Quite recently, 1,3-
dinitrobenzene has been used for the oxidation of Lipshutz
cuprates to afford medium-size ring compounds including the
biaryl skeleton.17
Lipshutz cuprates (R2Cu(CN)Li2) show higher reactivity in
chemical reactions than the traditional Gilman cuprates (R2CuLi‚
LiX).18 The unusual reactivity was believed to be due to the
structrure of Lipshutz cuprates in which the cyano group was
bound to copper by means of a Cu-CN bond, resulting in a
dianion species, R2Cu(CN)2-2Li+.19 After much investigation
and controversial discussion on the structure of Lipshutz
cuprates,20 X-ray structural determinations have revealed that
the cyano group in Lipshutz cuprats locates between two lithium
atoms as a bridge and Lipshutz cuprates possess a linear
carbon-copper-carbon arrangement.21 We expected that the
carbon-copper(I)-carbon linkage in Lipshutz cuprates would
be easily oxidized by electron acceptors to give the correspond-
ing carbon-copper(II)-carbon structure, and that the oxidation
of Lipshutz cuprates would finally produce homocoupling
products under mild conditions. In this study, we established a
novel electron-transfer oxidation of Lipshutz cuprates with
p-benzoquinones to produce biaryls as the homocoupling
products (Scheme 1). Since a variety of aryl bromides 1 can be
converted into Lipshutz cuprates 2, our new methodology can
produce a number of biaryls 3 in moderate to good yields. In
addition, this methodology can be successfully applied for the
construction of macrocycles 5a-5c (Scheme 1).22 Although the
macrocyclization such as intramolecular ring closure and
intermolecular cyclooligomerization usually affords cyclic
products in low yields due to preferable formation of linear
oligomers and five- and six-membered rings in some cases, our
novel electron-transfer oxidation of metallacyclic intermediates
including Lipshutz cuprates results in the formation of macro-
cyclic dimers owing to preferable formation of a dimetallacyclic
intermediate with the linear Ar-Cu-Ar arrangement.
(5) Fanta, P. E. Synthesis 1974, 9-21.
(6) Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174-2185.
(7) (a) Groenendaal, L.; Peerlings, H. W. I.; van Dongen, J. L. J.;
Havinga, E. E.; Vekemans, J. A. J.; Meijer, E. W. Macromolecules 1995,
28, 116-123. (b) Ebert, G. W.; Rieke, R. D. J. Org. Chem. 1984, 49, 5280-
5282. (c) Rieke, R. D.; Rhyne, L. D. J. Org. Chem. 1979, 44, 3445-3446.
(8) (a) Nishihara, Y.; Ikegashira, K.; Toriyama, F.; Mori, A.; Hiyama,
T. Bull. Chem. Soc. Jpn. 2000, 73, 985-990. (b) Pier, E.; Yee, J. G. K.;
Gladstone, P. L. Org. Lett. 2000, 2, 481-484. (c) van Koten, G.; Jastrzebski,
J. T. B. H.; Noltes, J. G. J. Chem. Soc., Chem. Commun. 1977, 203-204.
(d) van Koten, G.; Jastrzebski, J. T. B. H.; Noltes, J. G. J. Org. Chem.
1977, 42, 2047-2053.
(9) (a) Demir, A. S.; Reis, O¨ .; Emrullahoglu, M. J. Org. Chem. 2003,
68, 10130-10134. (b) Iyoda, M.; Nakao, K.; Kondo, T.; Kuwatani, Y.;
Yoshida, M.; Matsuyama, H.; Fukami, K.; Nagase, S. Tetrahedron Lett.
2001, 42, 6869-6872. (c) Iyoda, M.; Kondo, T.; Nakao, K.; Hara, K.;
Kuwatani, Y.; Yoshida, M.; Matsuyama, H. Org. Lett. 2000, 2, 2081-
2083. (d) Harada, G.; Yoshida, M.; Iyoda, M. Chem. Lett. 2000, 160. (e)
Kang, S.-K.; Baik, T.-G.; Jiao, X. H.; Lee, Y. T. Tetrahedron Lett. 1999,
40, 2383-2384.
(10) (a) Whitesides, G. M.; San Filippo, J.; Casey, C. P.; Panek, E. J. J.
Am. Chem. Soc. 1967, 89, 5302-5303. (b) Kauffmann, T. Angew. Chem.,
Int. Ed. Engl. 1974, 13, 291-356. (c) Kauffmann, Angew. Chem., Int. Ed.
Engl. 1979, 18, 1-19. (d) Bertz, S. H.; Gibson, C. P. J. Am. Chem. Soc.
1986, 108, 8286-8288.
(11) (a) Knochel, P.; Betzemier, B. In Modern Organocopper Chemistry;
Krause, N., Ed.; Wiley-VCH: Weinhein, Germany, 2002; pp 45-78. (b)
Ila, H.; Baron, O.; Wagner, A. J.; Knochel, P. Chem. Lett. 2006, 35, 2-7.
(b) Kabir, S. M. H.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama,
H.; Iyoda, M. J. Chem. Soc., Perkin Trans. 1 2001, 159-165.
(12) Lipshutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc.
1981, 103, 7672-7674.
(13) (a) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron
1984, 40, 5005-5038. (b) Lipshutz, B. H. Synthesis 1987, 325-341. (c)
Lipshutz, B. H. Synlett 1990, 119-128. (d) Lipshutz, B. H.; Sengupta, S.
Org. React. (N. Y.) 1992, 41, 135-631. (d) Lipshutz, B. H. In Organome-
tallics in Synthesis; Schlosser, M., Ed.; Wiley: Chichester, U.K., 1994; pp
283-382. (e) Lipshutz, B. H. In AdVances in Metal-Organic Chemistry;
Liebeskind, L. S., Ed.; JAI Press: Greenwich, CT, 1995; Vol. 4, pp 1-64.
(14) (a) Krause, N.; Gerold, A. Angew. Chem., Int. Ed. Engl. 1997, 36,
186-204. (b) Canisius, J.; Gerold, A.; Krause, N. Angew. Chem., Int. Ed.
1999, 38, 1644-1646. (c) Bertz, S. H.; Chopra, A.; Eriksson, M.; Ogle, C.
A.; Seagle, P. Chem.sEur. J. 1999, 5, 2680-2691. (d) Woodward, S. Chem.
Soc. ReV. 2000, 29, 393-401. (e) Yamanaka, M.; Nakamura, E. J. Am.
Chem. Soc. 2005, 127, 4697-4706.
(16) Dieter, R. K.; Li, S.; Chen, N. J. Org. Chem. 2004, 69, 2867-
2870.
(17) (a) Spring, D. R.; Krishnan, S.; Schreiber, S. L. J. Am. Chem. Soc.
2000, 122, 5656-5657. (b) Spring, D. R.; Krishnan, S.; Blackwell, H. E.;
Schreiber, S. L. J. Am. Chem. Soc. 2002, 124, 1354-1363. (c) Surry, D.
S.; Su, X.; Fox, D. J.; Franckevicius, V.; Macdonald, S. J. F.; Spring, D.
R. Angew. Chem., Int. Ed. 2005, 44, 1870-1873.
(18) Lipshutz, B. H.; Crow, R.; Dimock, S. H.; Ellsworth, E. L.; Smith,
R. A. J.; Behling, J. R. J. Am. Chem. Soc. 1990, 112, 4063-4064.
(19) (a) Lipshutz, B. H.; Kozlowski, J. A.; Breneman, C. M. J. Am. Chem.
Soc. 1985, 107, 3197-3204. (b) Lipshutz, B. H.; Ellsworth, E. L.; Siahaan,
T. J. J. Am. Chem. Soc. 1988, 110, 4834-4835.
(20) (a) Bertz, S. H. J. Am. Chem. Soc. 1990, 112, 4031-4032. (b)
Lipshutz, B. H.; Sharma, S.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112,
4032-4034. (c) Bertz, S. H. J. Am. Chem. Soc. 1991, 113, 5470-5471.
(d) Singer, R. D.; Oehlschlager, A. C. J. Org. Chem. 1992, 57, 2192-
2195. (e) Snyder, B. J. P.; Spangler, D. P.; Behling, J. R. J. Org. Chem.
1994, 59, 2665-2667. (f) Lipshutz, B. H.; James J. Org. Chem. 1994, 59,
7585-7587. (g) Stemmler, T. L.; Barnhart, T. M.; Penner-Hahn, J. E.;
Tucker, C. E.; Knochel, P.; Bo¨hme, M.; Frenking, G. J. Am. Chem. Soc.
1995, 117, 12489-12497. (h) Huang, H.; Alvarez, K.; Lui, Q.; Barnhart,
T. M.; Snyder, J. P.; Penner-Hahn, J. E. J. Am. Chem. Soc. 1996, 118,
8808-8816. (i) Cabezas, J. A.; Oehlschlager, A. C. J. Am. Chem. Soc. 1997,
119, 3878-3886. (j) Bertz, S. H.; Nilsson, K.; Davidsson, O¨ .; Snyder, J. P.
Angew. Chem., Int. Ed. 1998, 37, 314-317. (k) Mobley, T. A.; Mu¨ller, F.;
Berger, S. J. Am. Chem. Soc. 1998, 120, 1333-1334. (l) Gschwind, R. M.;
Rajamohanan, P. R.; John, M.; Boche, G. Organometallics 2000, 19, 2868-
2873.
(21) (a) Boche, G.; Bosold, F.; Marsch, M.; Harms, K. Angew. Chem.,
Int. Ed. 1998, 37, 1684-1686. (b) Kronenburg, C. M. P.; Jastrzebski, J. T.
B. H.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1998, 120, 9688-
9689. (c) Krause, N. Angew. Chem., Int. Ed. 1999, 38, 79-81. (d) Hwang,
C.-S.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 6409-6410.
(22) Miyake, Y.; Wu, M.; Rahman, M. J.; Iyoda, M. Chem. Commun.
2005, 411-413.
(15) (a) Lipshutz, B. H.; Siegmann, K.; Garcia, E. J. Am. Chem. Soc.
1991, 113, 8161-8162. (b) Lipshutz, B. H.; Siegmann, K.; Garcia, E.;
Kayser, F. J. Am. Chem. Soc. 1993, 115, 9276-9282. (c) Lipshutz, B. H.;
Kayser, F.; Liu, Z.-P. Angew. Chem., Int. Ed. Engl. 1994, 33, 1842-1844.
J. Org. Chem, Vol. 71, No. 16, 2006 6111