Paper
NJC
3
3
3
3
3
0 A. Hezam, K. Namratha, D. Ponnamma, Q. A. Drmosh, 42 L. C. Yang, S. N. Wang, J. J. Mao, J. W. Deng, Q. S. Gao,
A. M. Saeed, C. Cheng and K. Byrappa, Direct Z-Scheme Y. Tang and O. G. Schmidt, Hierarchical MoS /polyaniline
Cs O–Bi –ZnO heterostructures as efficient sunlight-
driven photocatalysts, ACS Omega, 2018, 3, 12260–12269.
2
2
2
O
3
nanowires with excellent electrochemical performance for
lithium-ion batteries, Adv. Mater., 2013, 25, 1180–1184.
1 X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang 43 Y. Z. Liu, H. Y. Zhang, J. Ke, J. Q. Zhang, W. J. Tian, X. Y. Xu,
and C. Li, Enhancement of photocatalytic H evolution on X. G. Duan, H. Q. Sun, M. O. Tade and S. B. Wang, 0D
(MoS )/2D (g-C heterojunctions in Z-scheme for
2
CdS by loading MoS
2
as cocatalyst under visible light
2
3 4
N )
irradiation, J. Am. Chem. Soc., 2008, 130, 7176–7177.
enhanced photocatalytic and electrochemical hydrogen evo-
2 B. Weng, X. Zhang, N. Zhang, Z. R. Tang and Y. J. Xu, Two-
lution, Appl. Catal., B, 2018, 228, 64–74.
2 2 3
dimensional MoS nanosheet-coated Bi S discoids: synth- 44 X. C. Meng, Z. Z. Li, H. M. Zeng, J. Chen and Z. S. Zhang,
esis, formation mechanism, and photocatalytic application,
Langmuir, 2015, 31, 4314–4322.
2 2 6
MoS quantum dots-interspersed Bi WO heterostructures
for visible light-induced detoxification and disinfection,
3 H. L. Li, K. Yu, X. Lei, B. G. Guo, C. Li, H. Fu and Z. Q. Zhu,
Appl. Catal., B, 2017, 210, 160–172.
Synthesis of the MoS @CuO heterogeneous structure with 45 J. M. Wang, J. Luo, D. Liu, S. T. Chen and T. Y. Peng, One-pot
2
improved photocatalysis performance and H
analysis, Dalton Trans., 2015, 44, 10438–10447.
4 K. Y. Duan, Y. L. Du, Q. L. Feng, X. L. Ye, H. Xie, M. Y. Xue
2
O adsorption
solvothermal synthesis of MoS
heterojunction photocatalysts for highly efficient visible-
light-driven H production, Appl. Catal., B, 2019, 241, 130–140.
2
-modified Mn0.2Cd0.8S/MnS
2
and C. M. Wang, Synthesis of platinum nanoparticles by 46 M. Pumera, Z. Sofer and A. Ambrosi, Layered transition
using molybdenum disulfide as a template and its applica-
tion to enzyme-like catalysis, ChemCatChem, 2014, 6,
metal dichalcogenides for electrochemical energy genera-
tion and storage, J. Mater. Chem. A, 2014, 2, 8981–8987.
47 H. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late,
R. Datta, S. K. Pati and C. Rao, MoS and WS analogues of
1
873–1876.
5 R. R. Jiang, D. H. Wu, G. H. Lu, Z. H. Yan and J. C. Liu,
Modified 2D-2D ZnIn /BiOCl van der Waals heterojunc-
tions with CQDs: accelerated charge transfer and enhanced 48 S. N. Guo, Y. L. Min, J. C. Fan and Q. J. Xu, Stabilizing and
3
3
2
2
2
S
4
graphene, Angew. Chem., Int. Ed., 2010, 49, 4059–4062.
photocatalytic activity under vis- and NIR-light, Chemo-
sphere, 2019, 227, 82–92.
6 H. N. Che, G. B. Che, P. J. Zhou, N. Song, C. X. Li, C. M. Li,
Improving Solar H
rods@MoS /RGO Hybrids via Dual Charge Transfer Pathway,
ACS Appl. Mater. Interfaces, 2016, 8, 2928–2934.
2
Generation from Zn(0.5)Cd(0.5)S Nano-
2
C. B. Liu, X. T. Liu and H. J. Dong, Precursor-reforming 49 W. B. Sun, H. Y. Zhang and J. Lin, Surface modification of
strategy induced g-C N microtubes with spatial anisotropic Bi O with Fe(III) clusters toward efficient photocatalysis in a
3
4
2 3
charge separation established by conquering hydrogen
bond for enhanced photocatalytic H -production perfor-
broader visible light region: implications of the interfacial
charge transfer, J. Phys. Chem. C, 2014, 118, 17626–17632.
50 F. Dong, X. Feng, Y. X. Zhang, C. F. Gao and Z. B. Wu, An
2
mance, J. Colloid Interface Sci., 2019, 547, 224–233.
7 G. Q. Zhu, M. Hojamberdiev, S. L. Zhang, S. T. Ud Din and
W. Yang, Enhancing visible-light-induced photocatalytic
activity of BiOI microspheres for NO removal by synchro-
nous coupling with Bi metal and graphene, Appl. Surf. Sci.,
3
anion-exchange strategy for 3D hierarchical (BiO)
2 3
CO /
amorphous Bi heterostructures with increased solar
2 3
S
absorption and enhanced visible light photocatalysis, RSC
Adv., 2015, 5, 11714–11723.
2
019, 467–468, 968–978.
8 Q. Z. Wang, T. J. Niu, L. Wang, C. X. Yan, J. W. Huang,
J. J. He, H. D. She, B. T. Su and Y. P. Bi, FeF /BiVO
heterojunction photoelectrodes and evaluation of its photo-
51 B. Weng, X. Zhang, N. Zhang, Z. R. Tang and Y. J. Xu, Two-
dimensional MoS nanosheet-coated Bi S discoids: synth-
3
2
2 3
2
4
esis, formation mechanism, and photocatalytic application,
Langmuir, 2015, 31, 4314–4322.
electrochemical performance for water splitting, Chem. Eng. 52 C. B. Liu, L. L. Wang, Y. H. Tang, S. L. Luo, Y. T. Liu,
J., 2018, 337, 506–514.
9 Z. Y. Lu, H. H. Zhang, W. Zhu, X. Y. Yu, Y. Kuang, Z. Chang,
S. Q. Zhang, Y. X. Zeng and Y. Z. Xu, Vertical single or few-
layer MoS nanosheets rooting into TiO nanofibers for
3
4
2
2
X. D. Lei and X. M. Sun, In situ fabrication of porous MoS
2
highly efficient photocatalytic hydrogen evolution, Appl.
Catal., B, 2015, 164, 1–9.
53 S. B. Ning, L. Y. Ding, Z. G. Lin, Q. Y. Lin, H. L. Zhang, H. X. Lin,
thin-films as high-performance catalysts for electrochemical
hydrogen evolution, Chem. Commun., 2013, 49, 7516–7518.
0 R. Ji, M. H. Zhang, W. Ma, Z. Zhu, C. C. Ma, P. W. Huo,
Y. S. Yan, Y. Liu and C. X. Li, Heterojunction photocatalyst
3 4
J. L. Long and X. X. Wang, One-pot fabrication of Bi O Cl/BiOCl
plate-on-plate heterojunction with enhanced visible-light
fabricated by deposition Co
3
O
4
nanoparticles on MoS
2
photocatalytic activity, Appl. Catal., B, 2016, 185, 203–212.
nanosheets with enhancing photocatalytic performance 54 S. T. Huang, Y. R. Jiang, S. Y. Chou, Y. M. Dai and
and mechanism insight, J. Taiwan Inst. Chem. Eng., 2019, C. C. Chen, Synthesis, characterization, photocatalytic activ-
7, 158–169. ity of visible-light-responsive photocatalysts BiO Cl
BiO Br by controlled hydrothermal method, J. Mol. Catal.
9
x
y
/
4
1 M. Shen, Z. P. Yan, L. Yang, P. W. Du and B. Xiang, MoS2
m
n
nanosheet/TiO nanowire hybrid nanostructures for enhanced
A: Chem., 2014, 391, 105–120.
2
visible-light photocatalytic activities, Chem. Commun., 2014, 55 R. P. Hu, X. Xiao, S. H. Tu, X. X. Zuo and J. M. Nan, Synthesis of
0, 15447–15449. flower-like heterostructured b-Bi /Bi CO microspheres
5
O
2 3
O
2 2
3
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019