Journal of the American Chemical Society
Page 8 of 9
1
2
3
4
5
6
7
8
FTIR and computational studies of gas-phase hydrogen atom
Molecular Oxygen Reactions with Nucleic Acids, Lipids, and
Proteins. Chem. Rev. 2019, 119, 2043.
(22) Cheng, J.-K.; Loh, T.-P. Copper- and Cobalt-Catalyzed Direct
Coupling of sp3 α-Carbon of Alcohols with Alkenes and
Hydroperoxides. J. Am. Chem. Soc. 2015, 137, 42.
(23) Sarkar, D.; Rout, N.; Ghosh, M. K.; Giri, S.; Neue, K.; Reuter,
H. Atom-Economical Palladium Carbon-Catalyzed de Novo
Synthesis of Trisubstituted Nicotinonitriles. J. Org. Chem. 2017, 82,
9012.
(24) Condensation of ethyl cyanoacetate with its sodium. Baron,
H.; Renfry, H.; Thorpe, J. J. Chem. Soc. 1904, 85, 1726.
(25) (a) Zhang, H.; Pu, W.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu,
Q.; Zhang, Q. Copper-Catalyzed Intermolecular Aminocyanation
and Diamination of Alkenes. Angew. Chem. Int. Ed. 2013, 52, 2529.
(b) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Regioselective
Radical Aminofluorination of Styrenes. Angew. Chem. Int. Ed. 2014,
53, 11079.
abstraction kinetics by t-butoxy radical. Chem. Phys. Lett. 2006,
427, 276. (f) Sekušak, S.; Sabljić, A., The role of complexes in
hydrogen abstraction from haloethanes by the hydroxyl radical. A
case of guided reactions. Chem. Phys. Lett. 1997, 272, 353.
(12) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.;
Geerlings, P.; De Proft, F., Electrophilicity and Nu-cleophilicity
Index for Radicals. Org. Lett. 2007, 9, 2721.
(13) Fu, Y.; Liu, L.; Yu, H-Z.; Wang, Y-M.; Guo, Q-X. Quantum-
Chemical Predictions of Absolute Standard Redox Potentials of
Diverse Organic Molecules and Free Radicals in Acetonitrile. J. Am.
Chem. Soc. 2005, 127, 7227.
(14) (a) Lalevée, J.; Allonas, X.; Fouassier, J. P. Halogen
Abstraction Reaction between Aminoalkyl Radicals and Alkyl
Halides: Unusual High Rate Constants. Chemical Physics Letters.
2008, 454, 415. (b) Lalevée, J.; Pouassier, J. P.; Blanchard, N.; Ingold,
K. U. Reaction between aminoalkyl radicals and akyl halides:
Dehalogenation by electron transfer? Chemical Physics Letters.
2011, 511, 156.
(15) (a) Munoz, Z.; Cohen, A. S.; Nguyen, L. M.; McIntosh, T. A.;
Hoggard, P. E. Photocatalysis by tetraphenylporphyrin of the
decomposition of chloroform. Photochem. Photobiol. Sci. 2008, 7,
337. (b) Thommes, K.; Icli, B.; Scopelliti, R.; Severin, K. Atom-
Transfer Radical Addition (ATRA) and Cyclization (ATRC)
Reactions Catalyzed by a Mixture of [RuCl2Cp*(PPh3)] and
Magnesium. Chem. Eur. J. 2007, 13, 6899. (c) Asscher, M.; Vofsi, D.
Chlorine-activation by redox-transfer. Part III. The ‘‘abnormal’’
addition of chloroform to olefins. J. Chem. Soc. 1963, 3921. (d)
Chen, Y.; Li, L.; Ma, Y,; Li, Z. Cobalt-Catalyzed Three-Component
Difluoroalkylation−Peroxidation of Alkenes. J. Org. Chem. 2019, 84,
5328.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) (a) Gonzalez-de-Castro, A.; Xiao, J. Green and Efficient: Iron-
Catalyzed Selective Oxidation of Olefins to Carbonyls with O2. J. Am.
Chem. Soc. 2015, 137, 8206. (b) Wang, T.; Jing, X.; Chen, C.; Yu, L.
Organoselenium-Catalyzed Oxidative C=C Bond Cleavage:
A
Relatively Green Oxidation of Alkenes into Carbonyl Compounds
with Hydrogen Peroxide. J. Org. Chem. 2017, 82, 9342.
(27) (a) Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F.; Banfi, S.;
Quici, S. Kharasch and Metalloporphyrin Catalysis in the
Functionalization of Alkanes, Alkenes, and Alkylbenzenes by t-
BuOOH. Free Radical Mechanisms, Solvent Effect, and Relationship
with the Gif Reaction. J. Am. Chem. Soc. 1995, 117, 226. (b) Avila, D.
V.; Ingold, K. U.; Luszytyk, J.; Green, W. H.; Procopio, D. R. Dramatic
Solvent Effects on the Absolute Rate Constants for Abstraction of
the Hydroxylic Hydrogen Atom from ferf-Butyl Hydroperoxide and
Phenol by the Cumyloxyl Radical. The Role of Hydrogen Bonding. J.
Am. Chem. Soc. 1995, 117, 2929.
(28) (a) Boess, E.; Wolf, L. M.; Malakar, S.; Salamone, M.; Bietti,
M.; Thiel, W.; Klussmann, M. Competitive Hydrogen Atom Transfer
to Oxyl- and Peroxyl Radicals in the Cu-Catalyzed Oxidative
Coupling of N-Aryl Tetrahydroisoquinolines Using tert-Butyl
Hydroperoxide ACS Catal. 2016, 6, 3253. (b) Boess, E.; Schmitz, C.;
Klussmann, M. A Comparative Mechanistic Study of Cu-Catalyzed
(16) Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. The
Oxidative Mannich Reaction Catalyzed by Dirhodium
Caprolactamate. J. Am. Chem. Soc. 2006, 128, 5648.
(17) (a) Boess, E.; Corinna, S.; Klussman, M. A Comparative
Mechanistic Study of Cu-Catalyzed Oxidative Coupling Reactions
with N-Phenyltetrahydroisoquinoline. J. Am. Chem. Soc. 2012, 134,
5317.(b) Boess, E.; Wolf, L. M.; Malakar, S.; Salamone, M.; Bietti, M.;
Thiel W.; Klussman, M. Competitive Hydrogen Atom Transfer to
Oxyl- and Peroxyl Radicals in the Cu-Catalyzed Oxidative Coupling
Oxidative
Coupling
Reactions
with
N-
of
N-Aryl
Tetrahydroisoquinolines
Using
tert-butyl
Phenyltetrahydroisoquinoline. J. Am. Chem. Soc. 2012, 134, 5317.
(c) Li, Z.; Li, C.-J. CuBr-Catalyzed Efficient Alkynylation of sp3 C-H
Bonds Adjacent to a Nitrogen Atom. J. Am. Chem. Soc. 2004, 126,
11810. (d) Li, Z.; Li, C.-J. Highly Efficient Copper-Catalyzed Nitro-
Mannich Type Reaction:ꢀ Cross-Dehydrogenative-Coupling
between sp3 C-H Bond and sp3 C-H Bond. J. Am. Chem. Soc. 2005,
127, 3672. (e) Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-Catalyzed
Amidation of sp3 C-H Bonds Adjacent to a Nitrogen Atom. Org. Lett.
2007, 9, 3813.
(29) DFT determination gives this conversion a reaction energy
of 16.6 kcal/mol that provides an equilibrium constant of 1.4x1012.
(30) Ren, Z.-H.; Zhao, M.-N.; Guan, Z.-H. CuI-catalyzed oxidative
cross coupling of oximes with tetrahydrofuran: a direct access to
O-tetrahydrofuran-2-yl oxime ethers. RSC Adv. 2016, 6, 16516.
(31) (a) Zhu, X.; Deng, W.; Chiou, M.-F.; Ye, C.; Jian, W.; Zeng, Y.;
Jiao, Y.; Ge, L.; Li, Y.; Zhang, X.; Bao, H., Copper-Catalyzed Radical
1,4-Difunctionalization of 1,3-Enynes with Alkyl Diacyl Peroxides
and N-Fluorobenzenesulfonimide. J. Am. Chem. Soc. 2019, 141, 548.
(b)Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S.
S.; Liu, G., Enantioselective cyanation of benzylic C–H bonds via
copper-catalyzed radical relay. Science 2016, 353, 1014.
Hydroperoxide. ACS Catal. 2016, 6, 3253.
(18) During our investigations a report appeared which claimed
the dichloromethyl radical from chloroform was formed in
reactions with TBHP and styrene without a catalyst or amine, but
our attempts to repeat these reactions were unsuccessful: Chen, C.;
Tan, H.; Liu, B.; Yue, C.-C.; Liu, W.-B. ATRA-like alkylation–
peroxidation of alkenes with trichloromethyl derivatives by the
combination of t-BuOOH and NEt3. Org. Chem. Front. 2018, 5, 3143.
(19) (a) Luo, Q.; Liu, C.; Tong, J.; Shao, Y.; Shan, W.; Wang, H.;
Zheng, H.; Cheng, J.; Wan, X. Cu-Catalyzed Multicomponent
Reaction of Styrenes, Perflouroalkyl Halide, Alcohol, and tert-Butyl
Hydroperoxide:
One-Pot
Synthesis
of
(Z)-β-
Alkoxyperfluoroalkenone. J. Org. Chem. 2016, 81, 3103. (b) Li, Y,;
Liu, J.; Zhao, S.; Du, X.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Copper-
Catalyzed Fluoroolefination of Silyl Enol Ethers and Ketones
toward the Synthesis of β-Fluoronones. Org. Lett. 2018, 20, 917.
(20) Kropf, H. Houben-Weyl Methoden der Organishen Chemie,
Peroxo-Verbindungen; Kropf, H., Ed.; Thieme: Stuttgart, 1988,
1102.
(21) (a) Howard, J. A.; Ingold, K. U. The Self-Reaction of sec-
Butylperoxy Radicals. Confirmation of the Russell Mechanism. J.
Am. Chem. Soc. 1968, 90, 1056. (b) Mascio, P. D.; Martinez, G. R.;
Miyamoto, S.; Ronsein, G. E.; Medeiros, M. H. G.; Cadet, J. Singlet
ACS Paragon Plus Environment