X. He, H. Shi0 / Materials Research Bulletin 46 (2011) 1692–1697
1697
show hysteresis at 5 K. Anomalous magnetic properties such as
relative large moments, coercivities and loop shifts were observed
on hexagonal CoO nanoparticles. The saturation magnetization,
coercivity and exchange bias increase monotonically with
decreasing particle size, indicating an obvious size effect. Accord-
ing to the multisublattice model, the smaller the particle size, the
more the number of the sublattice, and the more helpful to
enhance the coercivity and exchange bias. The observed two
resonance lines in ESR spectra can be attributed to the contribu-
tions of intrinsic antiferromagnetic structure and uncompensated
surface spins.
Acknowledgements
The authors would like to express their sincere thanks to Dr.
Xiaolong Fan, Prof. Li Xi and Yong Peng for valuable discussion. This
work was supported by the National Natural Science Foundation of
China (no. 50801033).
Fig. 6. Size dependence of Ms, HC and HE for the hexagonal CoO nanoparticles.
References
[1] C.N.R. Rao, B. Raveau, Transition Metal Oxides, 2nd ed., Wiley-VCH, Weinheim,
1995.
´
[2] L. Neel, Compt. Rend. 252 (1961) 4075.
[3] L.Y. Zhang, D.S. Xue, C.X. Gao, J. Magn. Magn. Mater. 267 (2003) 111–114.
[4] M. Ghosh, E.V. Sampathkumaran, C.N.R. Rao, Chem. Mater. 17 (2005) 2348–2352.
[5] D.P. Dutta, G. Sharma, P.K. Manna, A.K. Tyagi, S.M. Yusuf, Nanotechnology 19
(2008) 245609.
[6] Z.P. Chen, A.Q. Xu, Y. Zhang, N. Gu, Curr. Appl. Phys. 10 (2010) 967–970.
[7] M. Feygenson, A. Kou, L.E. Kreno, A.L. Tiano, J.M. Patete, F. Zhang, M.S. Kim, V.
Solovyov, S.S. Wong, M.C. Aronson, Phys. Rev. B 81 (2010) 014420.
[8] S.A. Makhlouf, H. Al-Attar, R.H. Kodama, Solid State Commun. 145 (2008) 1–4.
[9] R.H. Kodama, A.E. Berkowitz, Phys. Rev. B 59 (1999) 6321–6336.
[10] S.A. Makhlouf, F.T. Parker, F.E. Spada, A.E. Berkowitz, J. Appl. Phys. 81 (1997)
5561–5563.
[11] R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79 (1997) 1393–1396.
[12] A.E. Berkowitz, R.H. Kodama, S.A. Makhlouf, F.T. Parker, F.E. Spada, E.J. McNiff Jr., S.
Foner, J. Magn. Magn. Mater. 196–197 (1999) 591–594.
[13] W.S. Seo, J.H. Shim, S.J. Oh, E.K. Lee, N.H. Hur, J.T. Park, J. Am. Chem. Soc. 127 (2005)
6188–6189.
[14] K. An, N. Lee, J. Park, S.C. Kim, Y. Hwang, J.G. Park, J.Y. Kim, J.H. Park, M.J. Han, J. Yu,
T. Hyeon, J. Am. Chem. Soc. 128 (2006) 9753–9760.
[15] J.F. Liu, S. Yin, H.P. Wu, Y.W. Zeng, X.R. Hu, Y.W. Wang, G.L. Lv, J.Z. Jiang, J. Phys.
Chem. B 110 (2006) 21588–21592.
[16] J.F. Liu, Y. He, W. Chen, G.Q. Zhang, Y.W. Zeng, T. Kikegawa, J.Z. Jiang, J. Phys. Chem.
C 111 (2007) 2–5.
[17] A.S. Risbud, L.P. Snedeker, M.M. Elcombe, A.K. Cheetham, R. Seshadri, Chem.
Mater. 17 (2005) 834–838.
Fig. 7. ESR absorption-derivative spectra (a) and their corresponding integral
spectra (b) of the 38 nm CoO nanoparticles for different temperatures.
[18] M.J. Han, J. Yu, J. Korean Phys. Soc. 48 (2006) 1496.
[19] T. Dietl, T. Andrearczyk, A. Lipin´ ska, M. Kiecana, M. Tay, Y. Wu, Phys. Rev. B 70
(2004) 235209.
[20] J. Alaria, N. Cheval, K. Rode, M. Venkatesan, J.M.D. Coey, J. Phys. D: Appl. Phys. 41
(2008) 135004.
structure and uncompensated surface spins, respectively. This kind
of spectra has been observed for several diluted semiconductor
systems [26,27] and antiferromagnetic MnO samples [28].
[21] V.V. Pishko, S.L. Gnatchenko, V.V. Tsapenko, R.H. Kodama, S.A. Makhlouf, J. Appl.
Phys. 93 (2003) 7382–7384.
[22] M. Rubinstein, R.H. Kodama, S.A. Makhlouf, J. Magn. Magn. Mater. 234 (2001)
289–293.
4. Conclusions
[23] H.T. Zhang, X.H. Chen, Nanotechnology 16 (2005) 2288–2294.
[24] E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, D. Rinaldi, M. Vasilakaki, K.N.
Trohidou, Nanotechnology 19 (2008) 185702.
[25] F. Rivadulla, M. Freita-Alvite, M.A. Lo´pez-Quintela, L.E. Hueso, D.R. Migue´ns, P.
Sande, J. Rivas, J. Appl. Phys. 91 (2002) 785–788.
[26] V. Likodimos, M. Pissas, Phys. Rev. B 76 (2007) 024422.
[27] E.A. Zvereva, O.A. Savelieva, A.E. Primenko, S.A. Ibragimov, E.I. Slyn’ko, V.E.
Slyn’ko, J. Appl. Phys. 108 (2010) 093923.
Hexagonal CoO nanoparticles in the size range 38–93 nm were
prepared by the thermal decomposition of cobalt acetylacetonate
in oleylamine. The hcp-structured CoO nanoparticles are of
pyramid configuration, and the particle size increases with
increasing precursor concentration. The particles do not exhibit
a distinct antiferromagnetic transition around 300 K but instead
[28] M.S. Seehra, G. Srinivasan, J. Appl. Phys. 53 (1982) 8345–8347.