Communication
ChemComm
with that of phosphate 1a (Scheme 2b). Almost 30% of 4
remained even after the reaction was carried out for 5 h at
2 (a) F. Schmidt, T. T. Stemmler, J. Rudolph and C. Bolm, Chem. Soc.
Rev., 2006, 35, 454; (b) S. Mondal and G. Panda, RSC Adv., 2014,
4, 28317; (c) W. K. O. Teixeira, D. Y. de Albuquerque,
2
0 1C, and 3aa was obtained in 62% yield, as suggested by
S. Narayanaperumal and R. S. Schwab, Synthesis, 2020, 1855.
3 (a) H.-J. B ¨o hm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. M u¨ ller,
U. Obst-Sander and M. Stal, ChemBioChem, 2004, 5, 637;
1
H NMR analysis of the crude reaction mixture. Therefore, this
result clearly demonstrates the superiority of the phosphate
(
(
b) K. M u¨ ller, C. Faeh and F. Diederich, Science, 2007, 317, 1881;
c) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc.
leaving group in the Fe(OTf)
theless, benzhydrol 6 could be used as the substrate for
Fe(OTf) -catalyzed F–C reaction. The reaction of 6 was per-
formed in the presence of 20 mol% Fe(OTf) at 50 1C for
.5 h to afford triarylmethane 7 in 90% yield (Scheme 2c).
Recently, Yamazaki et al. reported the base-catalyzed substitu-
tion reaction of CF -substituted benzylic carbonates with 1,
3
-catalyzed F–C reaction. Never-
Rev., 2008, 37, 320; (d) E. P. Gillis, K. J. Eastman, M. D. Hill,
D. J. Donnelly and N. A. Meanwell, J. Med. Chem., 2015, 58,
3
8
315.
3
4
Selected recent examples: (a) G. K. S. Prakash, F. Paknia, T. Mathew,
5
G. Mlosto n´ , J. P. Joschek and G. A. Olah, Org. Lett., 2011, 13, 4128;
(
b) D. Ryu, D. N. Primer, J. C. Tellis and G. A. Molander, Chem. – Eur.
J., 2016, 22, 120; (c) V. D. Vukovi ´c , E. Richmond, E. Wolf and
J. Moran, Angew. Chem., Int. Ed., 2017, 56, 3085; (d) H.-J. Tang, L.-
Z. Lin, C. Feng and T.-P. Loh, Angew. Chem., Int. Ed., 2017, 56, 9872;
3
16
3
-dicarbonyl compounds. We also performed the reaction of
phosphate 1a with acetylacetone (3 equiv.) in the presence of
0 mol% Fe(OTf) at 50 1C for 5 h to afford the expected product 8
as an inseparable mixture with small amounts of alcohol 4
Scheme 2d). The crude product was treated with hydrazine
(
5
e) M. Brambilla and M. Tredwell, Angew. Chem., Int. Ed., 2017,
6, 11981; ( f ) W. Huang, M. Hu, X. Wan and Q. Shen, Nat. Commun.,
1
3
2019, 10, 2963; (g) C. Kuang, X. Zhou, Q. Xie, C. Ni, Y. Gu and J. Hu,
Org. Lett., 2020, 22, 8670; (h) A. Varenikov, E. Shapiro and
M. Gandelman, Org. Lett., 2020, 22, 9386; (i) T.-Y. Lin, Z. Pan,
Y. Tu, S. Zhu, H.-H. Wu, Y. Liu, Z. Li and J. Zhang, Angew. Chem.,
Int. Ed., 2020, 59, 22957.
5 (a) N. A. Meanwell, J. Med. Chem., 2011, 54, 2529; (b) Y. Zafrani,
D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D. Marciano,
E. Gershonov and S. Saphier, J. Med. Chem., 2017, 60, 797;
(
hydrate in methanol under reflux to afford pyrazole 8a in 76%
yield over two steps. Similarly, 3,5-heptanedione reacted with 1a
and the corresponding pyrazole 8b was obtained in a higher yield
(82%). Because the reaction using dibenzoylmethane afforded the
(
c) C. D. Sessler, M. Rahm, S. Becker, J. M. Goldberg, F. Wang and
corresponding intermediate as a solid, the subsequent condensa-
tion was performed in EtOH at 80 1C to give the desired product
S. J. Lippard, J. Am. Chem. Soc., 2017, 139, 9325.
6
(a) Y. Yamamoto, Y. Ishida, Y. Takamizu and T. Yasui, Adv. Synth.
Catal., 2019, 361, 3739Also, see: (b) Y. Yamamoto, M. Sakai, Y. Ishida
and T. Yasui, J. Org. Chem., 2021, 86, 1053.
7 (a) M. McLaughlin, Org. Lett., 2005, 7, 4875; (b) C. C. Kofink and
P. Knochel, Org. Lett., 2006, 8, 4121; (c) R. B. Bedford, M. Huwe and
M. C. Wilkinson, Chem. Commun., 2009, 600; (d) P. Zhang, J. Xu,
Y. Gao, X. Li, G. Tang and Y. Zhao, Synlett, 2014, 2928; (e) W. Xu,
R. Paira and N. Yoshikai, Org. Lett., 2015, 17, 4192; ( f ) R. A. Laskar
and N. Yoshikai, J. Org. Chem., 2019, 84, 13172.
8
c, albeit in a diminished yield (60%). Therefore, the nucleophile
is not limited to (hetero)arenes in our Fe(OTf) -catalyzed reaction
of CF H-substituted benzyl phosphates.
3
2
Finally, the present Fe(OTf) -catalyzed F–C reaction protocol
3
could be applied to deactivated benzyl phosphates 9a and 9b,
bearing a phenacyl or cyano group, respectively, to afford the
expected products 10a and 10b in high yields (Scheme 2e).
8
(a) M. Bandini and M. Tragni, Org. Biomol. Chem., 2009, 7, 1501;
b) M. Rueping and B. J. Nachtsheim, Beilstein J. Org. Chem., 2010,
(
In conclusion, we have successfully developed the Fe(OTf)
catalyzed F–C reaction of 2,2-difluoro-1-arylethyl phosphates
with electron-rich (hetero)arenes toward the efficient synthesis
of difluoromethylated diarylmethanes. The Fe(OTf) -catalyzed
3
F–C reaction also proceeded in the presence of a proton
3
-
6, 6, DOI: 10.3762/bjoc.6.6.
(a) A. G. Smith and J. S. Johnson, Org. Lett., 2010, 12, 1784;
9
(
b) G. Pallikonda and M. Chakravarty, J. Org. Chem., 2016,
1, 2135; (c) T. Yurino, A. Hachiya, K. Suzuki and T. Ohkuma,
Eur. J. Org. Chem., 2020, 2225.
0 The Hammet substituent constant of CF
8
1
1
1
2
H (s
(s
= ꢁ0.27 and s
p
0.32) is comparable
0.36). The Hammett
= 0.12. See:
t
to those of CO Bu (s
p
0.32) and CONH
2
p
scavenger, 2,6-di(tert-butyl)-4-methylpyridine, suggesting that
substituent constants for MeO are s
p
m
Fe(OTf) functions as a Lewis acid catalyst. The p-methoxybenzyl
C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
1 For reviews of iron-catalyzed reactions, see: (a) I. Bauer and
H.-J. Kn ¨o lker, Chem. Rev., 2015, 115, 3170; (b) S. Rana,
J. P. Biswas, S. Paul, A. Paik and D. Maiti, Chem. Soc. Rev., 2021,
50, 243.
3
phosphate substrate was found to be superior to the corres-
ponding alcohol. Moreover, Fe(OTf) catalyzed the reaction of
3
p-methoxybenzyl phosphate with 1,3-diketones, and the obtained
products were converted into pyrazole derivatives through the
condensation with hydrazine hydrate.
This research is partially supported by the Platform Project for
Supporting Drug Discovery and Life Science Research (Basis for
Supporting Innovative Drug Discovery and Life Science Research
2 (a) T. C. Wabnitz, J.-Q. Yu and J. B. Spencer, Chem. – Eur. J., 2004,
10, 484; (b) D. C. Rosenfeld, S. Shekhar, A. Takeyama,
M. Utsunomiya and J. F. Hartwig, Org. Lett., 2006, 8, 4179;
(c) J. G. Taylor, L. A. Adrio and K. K. Hii, Dalton Trans., 2010,
3
9, 1171; (d) T. T. Dang, F. Boeck and L. Hintermann, J. Org. Chem.,
2011, 76, 9353.
1
1
3 X. Chaminade, S. Chiba, K. Narasaka and E. Du n˜ ach, Tetrahedron
Lett., 2008, 49, 2384.
4 U. J. Youn, Y. S. Lee, H. Jeong, J. Lee, J.-W. Nam, Y. J. Lee,
E. S. Hwang, J.-H. Lee, D. Lee, S. S. Kang and E.-K. Seo, J. Nat. Prod.,
(
BINDS) from AMED under Grant Number JP20am0101099).
2
009, 72, 1895.
Conflicts of interest
1
5 (a) L. Coulombel, M. Rajzmann, J.-M. Pons, S. Olivero and
E. Du n˜ ach, Chem. – Eur. J., 2006, 12, 6356; (b) M. J.-L. Tschan,
C. M. Thomas, H. Strub and J.-F. Carpentier, Adv. Synth. Catal., 2009,
There are no conflicts to declare.
351, 2469; (c) D. B. G. Williams and M. Lawton, J. Mol. Catal. A:
Notes and references
Chem., 2010, 317, 68.
6 K. Terashima, T. Kawasaki-Takasuka, T. Agou, T. Kubota and
T. Yamazaki, Chem. Commun., 2020, 56, 3031.
1
1
D. Ameen and T. J. Snape, MedChemComm, 2013, 4, 893.
3
880
|
Chem. Commun., 2021, 57, 3877–3880
This journal is © The Royal Society of Chemistry 2021