R. Baati et al. / Tetrahedron Letters 43 (2002) 2179–2181
2181
General procedure
9. Kadota, J.; Komori, S.; Fukumoto, Y.; Murai, S. J. Org.
Chem. 1999, 64, 7523–7527.
Method A: A solution of aldehyde (2 mmol) and CCl4
(1 mmol) in THF (1 mL) was added to a stirring, 0°C
suspension of CrCl2 (6 mmol; Strem Chem., 99.9%) in
THF (9 mL) under an argon atmosphere. After 10 h at
room temperature, the resultant reddish reaction mix-
ture was quenched with water, extracted thrice with
ether, and the combined ethereal extracts were evapo-
rated in vacuo. The residue was purified by SiO2 chro-
matography affording 2-haloalk-2(Z)-en-1-ols in the
indicated yields (Table 1).
10. (a) Kochi, J. K.; Davis, D. D. J. Am. Chem. Soc. 1964,
86, 5264; (b) Kochi, J. K.; Singleton, D. M. J. Am. Chem.
Soc. 1968, 90, 1582.
11. Fu¨rstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118,
12349–12357.
12. (a) Hiyama, T.; Okude, Y.; Kimira, K.; Nozaki, H. Bull.
Chem. Soc. Jpn. 1982, 55, 561–568; (b) Okude, Y.;
Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc.
1977, 99, 3179.
1
13. Spectral data for 7: H NMR (CDCl3, 300 MHz) l 2.56
(d, 1H, J=5.1 Hz), 5.45 (d, 1H, J=4.2 Hz), 7.26 (s, 1H),
7.31–7.52 (m, 8H), 7.60–7.70 (m, 2H). Compound 9: H
1
Method B: CCl4 (1 mmol) was stirred with a slurry of
CrCl2 (6.5 mmol) in dry THF (9 mL) at 0°C under
argon. After 15 min, a solution of aldehyde (2 mmol) in
THF (1 mL) was added and the stirring was continued
at ambient for 10 h. Isolation and purification as
described above gave the adduct in the indicated yields
(Table 1).
NMR l 7.45–6.90 (m, 10H), 5.61 (t, 1H, J=8.0 Hz),
4.47–4.35 (m, 1H), 2.57 (s, 1H), 2.55–2.35 (m, 6H),
2.20–1.80 (m, 2H); 13C NMR l 144.1, 141.2, 135.1, 131.1,
130.5, 129.1, 128.6, 127.8, 127.1, 123.9, 79.9, 36.1, 34.2,
32.1, 30.4. Compound 13: 1H NMR l 7.62 (d, 2H, J=9.3
Hz), 7.36 (d, 2H, J=8.7 Hz), 6.84–6.92 (m, 5H), 5.33 (d,
1H, J=4.5 Hz), 3.79 (s, 3H), 3.78 (s, 3H), 2.64 (d, 1H,
J=5.1 Hz); 13C NMR (CDCl3, 75 MHz) l 159.66,
159.51, 133.08, 132.75, 130.95, 128.19, 126.93, 124.69,
Acknowledgements
1
114.05, 113.84, 77.91, 55.44. Compound 15: H NMR l
7.56–7.78 (m, 8H), 7.06 (s, 1H), 5.50 (d, 1H, J=3.3 Hz),
2.67 (d, 1H, J=4.5 Hz). Compound 17: 1H NMR
(CD3COCD3) l 7.44–7.50 (m, 4H), 7.14–7.20 (m, 2H),
7.20–7.07 (m, 2H), 6.60 (s, 1H), 4.29 (s, 2H); 13C NMR l
149.76, 149.05, 148.48, 142.27, 140.17, 131.59, 129.38,
Financial support provided by Robert A. Welch Foun-
dation, NIH (GM31278, DK38226), CNRS, Instituts
de Recherches Pierre Fabre (to R.B.), and an unre-
stricted grant from Taisho Pharmaceutical Co. Ltd. Dr.
E. R. Fogel is warmly thanked for insightful
discussions.
1
125.30, 124.77, 124.65, 77.75. Compound 19: H NMR l
7.79 (s, 1H), 7.61 (s, 1H), 7.55 (d, 1H, J=5.7 Hz), 7.45
(dd, 2H, J=6.0, 10.5 Hz), 7.37 (d, 1H, J=6.0 Hz), 7.24
(dd, 2H, J=5.7, 11.7 Hz), 6.91 (s, 1H), 5.36 (d, 1H,
J=2.4 Hz), 2.62 (d, 1H, J=3.3 Hz); 13C NMR l 142.3,
136.02, 135.67, 132.28, 131.76, 131.50, 130.36, 130.02,
129.97, 128.13, 125.55, 124.65, 122.94, 122.56, 77.54.
References
1. Reviews: (a) Hodgson, D. M. J. Organomet. Chem. 1994,
476, 1–5; (b) Fu¨rstner, A. Chem. Rev. 1999, 99, 991–1045.
2. Guo, J.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth,
R. M.; Hayward, M. M.; Kishi, Y. Angew. Chem., Int.
Ed. 1998, 37, 187–192.
3. Gonza´lez, I. C.; Forsyth, C. J. Tetrahedron Lett. 2000, 41,
3805–3807.
4. Baati, R.; Barma, D. K.; Falck, J. R.; Mioskowski, C. J.
1
Compound 21: H NMR l 7.26–7.46 (m, 11H), 7.12 (dd,
1H, J=1.2, 6.0 Hz), 7.01 (d, 1H, J=1.2 Hz), 6.80–6.92
(m, 4H), 5.30 (d, 1H, J=2.1 Hz), 5.15 (s, 2H), 5.13 (s,
2H), 3.87 (s, 6H), 2.60 (d, 1H, J=2.1 Hz); 13C NMR l
149.80, 149.22, 148.29, 148.28, 137.18, 137.03, 133.59,
133.12, 128.74, 128.71, 128.06, 128.02, 127.54, 127.42,
127.38, 124.94, 122.84, 119.30, 113.74, 113.46, 112.87,
110.53, 78.08, 71.12, 70.98, 56.20, 56.15. Compound 23:
1H NMR l 7.33 (d, 1H, J=1.8 Hz), 7.05 (dd, 1H, J=1.8,
8.1 Hz), 6.89–6.96 (m, 2H), 6.85 (s, 1H), 6.79 (d, 2H,
J=8.1 Hz), 5.96 (s, 2H), 5.95 (s, 2H), 5.28 (d, 1H, J=3.3
Hz), 2.52 (d, 1H, J=4.5 Hz); 13C NMR l 148.06, 147.76,
147.71, 147.63, 134.46, 133.13, 128.26, 124.93, 124.42,
120.64, 109.27, 108.37, 108.35, 107.34, 101.41, 101.39,
78.06. Compound 25: 1H NMR l 7.51–7.20 (m, 10H),
7.13 (dd, 1H, J=16, 10 Hz), 6.81–6.57 (m, 3H), 6.32 (dd,
1H, J=16, 6 Hz), 4.97 (t, 1H, J=6.0 Hz), 2.22 (d, 1H,
J=6.0 Hz); 13C NMR l 138.2, 137.8, 136.2, 135.3, 128.7,
128.5, 128.3, 128.1, 127.7, 126.7, 126.5, 126.1, 123.2, 76.1.
Am. Chem. Soc. 2001, 123, 9196–9197.
5. Falck, J. R.; Barma, D. K.; Mioskowski, C.; Schlama, T.
Tetrahedron Lett. 1999, 40, 2091–2094.
6. Barma, D. K.; Baati, R.; Valleix, A.; Mioskowski, C.;
Falck, J. R. Org. Lett. 2001, 3, 4237–4238.
7. Baati, R.; Barma, D. K.; Krishna, U. M.; Mioskowski,
C.; Falck, J. R. Tetrahedron Lett. 2002, 43, 959–961.
8. For additional evidence that 1 is an intermediate as well
as its utility in the preparation of ‘unsymmetrical’
chloroalkenols using different aldehydes, see: Baati, R.;
Barma, D. K.; Falck, J. R.; Mioskowski, C. Tetrahedron
Lett. 2002, 43, 2183–2185.