DOI: 10.1039/C4OB02085E
Organic & Biomolecular Chemistry
Hemicryptophane 2
Complex Cu(II)@hemicryptophane-3.
Hemicryptophane 1, (257 mg, 0.212 mmol) was dissolved in 60 To a solution of hemicryptophane 3 (15.6 mg, 14 μmol) in milli-
anhydrous DMF (20 mL) and Cs2CO3 (276 mg, 0.848 mmol) was
added to the solution which was stirred at 60°C for 15 minutes.
Then tert-butylbromoacetate (0.141 mL, 0.945 mmol) was added
and the mixture was stirred at 60°C for 2 hours, then at room
Q water (3 mL) was added Cu(ClO4)2.6H2O (5.1 mg, 14 μmol)
and Et3N (9 μL, 67 μmol). The solution was stirred for 5 minutes
and water and Et3N were removed under vacuum. Milli-Q water
(1.5 mL) was added and the blue solid was triturated in this
5
temperature overnight. The solvent was removed and CHCl3 (20 65 solvent. The solution was centrifugated and the supernatant was
mL) and H2O (20 mL) were added to the residue. The two layers
were separated and the aqueous phase was extracted with CHCl3
10 (20 mL). The combined organic solutions were washed with H2O
(2 x 20 mL) and dried over anhydrous Na2SO4. The solvent was
removed. This last step was repeated with 1 mL of milli-Q water
and the residue was dried under vacuum. A blue solid was
obtained (7.9 mg, 50 %). ESI-MS m/z observed 1142.3646 ([M]-,
calculated 1142.3591 for C60H63CuN4O15). EPR (H2O/NaOH; pH
evaporated and the crude product was purified by column 70 = 8; 70 K) g1 = 2.015 (A1 = 193 MHz); g2 = 2.135 (A2 = 158
chromatography on silica gel, using CH2Cl2 and a gradient of
EtOAc (10% to 50%) as eluent. Compound 2 was obtained as a
15 foamy white solid (252 mg, 77 %). ESI-MS m/z observed
1551.7991 ([M + H]+, calculated 1551.7991 for C87H115N4O21).
MHz); g3 = 2.220 (A3 = 363 MHz).Vis-Near IR spectroscopy
(H2O, 298 K) λmax = 850 nm, ε = 237 M-1.cm-1, shoulder band
around 700 nm, ε = 165 M-1.cm-1. Cyclic Voltammetry: Epc = -
0.34 V and Epa = 0.30 V vs E1/2 [FcMeOH0/+] (H2O, NaOH (1.5
1H NMR (CDCl3, 298 K, 500.10 MHz): δ 7.13-6.91 (br, 6H, 75 mM), 12-CuII (5.10-4 M), NaNO3 (0.1 M), working electrode:
ArH), 6.91-6.82 (br, 6H, ArH) , 6.82-6.66 (br, 6H, ArH), 4.65 (d,
3H, J=13.7 Hz, ArCH2Ar), 4.56 (d, 3H, J=16.0 Hz, CH2COO)
20 4.48-4.05 (m, 21H, CH2COO; O(CH2)2O; ArCH2N), 3.47 (d, 3H,
J=13.7 Hz, ArCH2Ar), 3.07-2.60 (br, 6H, N(CH2)2N), 2.50-2.15
carbone, 50 mV.s-1)
Notes and references
[a] Dr. A. Schmitt, Dr. C. Bucher, Dr. J.-P. Dutasta, Pr. A. Martinez
Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS,
80 UCBL, 46, Allée d'Italie, F-69364 Lyon, France
t
(br, 6H, N(CH2)2N), 1.51-1.32 (br, 54H, C(CH3)3 BOC et Bu-
ester). 13C NMR (CDCl3, 298 K, 125.76 MHz): δ 168.59
(CH2C(O)O) 157.97, 155.92 and 155.36 (NC(O)O), 147.49 (CAr),
25 147.30 (CAr), 134.00 (CAr), 133.08 (CAr), 130.99 (CAr), 129.42
(CAr), 128.74 (CAr), 118.77 (CAr), 117.53 (CAr), 115.19 (CAr),
82.06 (OC (CH3)3), 79.70 (OC(CH3)3), 68.49 and 68.25 (OCH2),
66.77 (OCH2), 52.92 (N(CH2)2N), 50.45 and 49.78 (NCH2Ar),
45.12 (N(CH2)2N), 36.52 (ArCH2Ar), 28.67 (CH3), 28.26 (CH3).
30 Mp: 229.185 °C. IR ν = 2974, 2918, 1749, 1686, 1612, 1509,
1456, 1408, 1365, 1246, 1143cm-1.
[b] Dr Vincent Maurel, Laboratoire de Résonances Magnétiques, CEA-
Grenoble/INAC/SCIB/LRM, UMR-E 3 CEA-UJF, 17, rue des Martyrs
38054 Grenoble CEDEX 09
[c] Pr. A. Martinez, Aix Marseille Universite, Centrale Marseille, CNRS,
85 iSm2 UMR 7313, 13397, Marseille, France
† Electronic Supplementary Information (ESI) available: [Syntheis of 1,
1H and 13C NMR spectra of compounds
DOI: 10.1039/b000000x/
2
and 3]. See
‡ Footnotes should appear here. These might include comments relevant
90 to but not central to the matter under discussion, limited experimental and
spectral data, and crystallographic data.
Hemicryptophane 3
Trifluoroacetic acid (TFA, 780 µL, 10 mmol) was added to a
solution of hemicryptophane 2 (120 mg, 77 µmol) in CH2Cl2 (2
35 mL). The mixture was stirred for 2h at room temperature and the
solvent and TFA were removed under vacuum. Several additions
and evaporations of CHCl3 were carried out to facilitate the
evaporation of TFA. Distilled water (1.5 mL) and NaOH (19.6
mg, 490 µmol) were added to the residue and the mixture was
40 stirred for 30 minutes. Water was then evaporated to give 3 as a
yellow solid (quantitative). ESI-MS m/z observed 1081.4500 ([M
1
2
J. Canceill, A. Collet, J. Gabard, F. Kotzyba-Hibert and J.-M.
Lehn, Helv. Chim. Acta, 1982, 65, 1894;
95
100
105
110
(a) S. Le Gac and I. Jabin, Chem. Eur. J., 2008, 14, 548-557.
(b) O. Perraud, V. Robert, A. Martinez and J.-P. Dutasta,
Chem. Eur. J., 2011, 17, 4177-4182. (c) L. Wang, G.-T.
Wang, X. Zhao, X.-K. Jiang and Z.-T. Li, J. Org. Chem.,
2011, 76, 3531-3535. (d) O. Perraud, A. Martinez and J.-P.
Dutasta, Chem. Comm., 2011, 47, 5861-5863. (e) O. Perraud,
V. Robert, A. Martinez and J.-P. Dutasta, Chem. Eur. J., 2011,
17, 13405-13408. (f) O. Perraud, V. Robert, H. Gornitzka, A.
Martinez and J.-P. Dutasta, Angew. Chem. Int. Ed. Engl.,
2012, 51, 504-508.
(a) A. Martinez and J-P Dutasta, J. Catal., 2009, 267, 188-192.
(b) Y. Makita, K. Sugimoto, K. Furuyosho, K. Ikeda, S. I.
Jujiwara, T. Shin-ike and A. Ogawa, Inorg Chem, 2010, 49,
7220-7222; (c) Y. Makita, K. Ikeda, K. Sugimoto, T. Fujita, T.
Danno, K. Bobuatong, M. Ehara, S. I. Jujiwara and A. Ogawa,
J. Organometall. Chem., 2012, 26, 706, -707. (d) O. Perraud,
A. B. Sorokin, J.-P. Dutasta and A. Martinez, Chem. Commun.
2013, 49, 1288-1290.
(a) A. Martinez, V. Robert, H. Gornitzka and J.-P. Dutasta,
Chem. Eur. J., 2010, 16, 520-527. (b) A. Martinez, L. Guy and
J.-P. Dutasta, J. Am. Chem. Soc., 2010, 132, 16733-16734. (c)
N. S. Khan, J. M. Perez-Aguilar, T. Kaufmann, P. A. Hill, O.
Taratula, O.-S. Lee, P. J. Carroll, J. G. Saven and I. J.
Dmochowski, J. Org. Chem., 2011, 76 , 1418–1424.
M. Raynal, P. Ballester, A. Visal-Ferran, P. W. N. M. Van
Leeuwen Chem. Rev. 2014, 43, 1660-1733.
M. Raynal, P. Ballester, A. Visal-Ferran, P. W. N. M. Van
Leeuwen Chem. Rev. 2014, 43, 1734-1787.
A. J. Kirby, Angew. Chem. Int. Ed., 1996, 35, 707-724.
1
+ 2H]-, 1081.4452 calculated for C60H65N4O15). H NMR (D2O,
298 K, 500.10 MHz): δ 7.36 (s, 3H, ArH), 6.91 (s, 3H, ArH),
6.45 (d, 6H, J=8.4 Hz, ArH), 6.19 (d, 6H, J=8.4 Hz, ArH), 4.80
45 (d, 3H, J=13.8 Hz, ArCH2Ar), 4.69-4.65 (m, 3H, O(CH2)2O),
4.42-4.36 (m, 3H, O(CH2)2O), 4.36-4.28 (m, 3H, O(CH2)2O),
4.19-4.10 (m, 3H, O(CH2)2O), 4.03 (d, 3H, J=15.4 Hz,
OCH2COO), 3.80 (d, 3H, J=15.4 Hz, OCH2COO), 3.59 (d, 3H,
J=13.8 Hz, ArCH2Ar), 3.41 (d, 3H, J=13.6 Hz, ArCH2N), 3.17 (d,
50 3H, J=13.6 Hz, ArCH2N), 2.25-2.00 (m, 12H, N(CH2)2N).13C
NMR (D2O, 298 K, 125.76 MHz): δ 176.07 ((C=O)O), 157.68
(CArO), 145.85 (CArO), 145.47 (CArO), 133.41 (CAr), 132.79
(CAr), 130.00 (CArH), 129.27 (CAr), 116.38 (CArH), 115.82
(CArH), 114.19 (CArH), 69.12 (O(CH2)2O), 66.71 (OCH2C(O)O),
55 66.32 (O(CH2)2O), 52.92 (N(CH2)2N), 50.51 (ArCH2N), 44.79
(N(CH2)2N), 35.26 (ArCH2Ar). Mp: 219.3 °C. IR ν = 3400,
2923., 2856., 1681, 1605, 1509, 1425, 1335, 1259, 1204, 1176,
1127 cm-1.
3
4
115
120
5
6
7
4
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]