J . Org. Chem. 1996, 61, 3863-3864
3863
Notes
Ta ble 1. Red u ction of Glycosyl Br om id es to
An h yd r oa ld itols by 1
Red u ction of Glycosyl Br om id es to
An h yd r oa ld itols by Tita n ocen e
Bor oh yd r id e
Cullen L. Cavallaro and J effrey Schwartz*
Department of Chemistry, Princeton University,
Princeton, New J ersey 08544-1009
Received October 20, 1995. (Revised Manuscript Received
March 4, 1996 )
Anhydroalditols are a class of reduced sugars which
are present in many natural systems and which have also
been employed as synthesis intermediates. For example,
1
,5-anhydro-D-glucitol has been isolated from several
1
plant and animal sources, discovered in human cere-
2
brospinal fluid and blood plasma, and found to be an
inhibitor of several enzymes.3 1,5-Anhydrohexitols have
4
been used in the synthesis of carbohydrates and nucleo-
sides which have antiviral activity.5 Anhydroalditols
have been synthesized variously, including by dehydra-
6
tion of the glycitol, but the most commonly used path-
ways involve reduction of glycoside intermediates. Such
7
reductive routes include desulfurization of 1-thio- or
8
isothiocyanate derivatives, reaction of silyl alkyl glyco-
9
sides with TMSOTf/triethylsilane, or treating a glycosyl
halide with LAH.10 The most commonly used methodol-
ogy involves reduction of a glycosyl halide with tin
hydride and a radical promoter.11 Yields for this latter
process are good, but the toxicity of organotin byproducts
and the difficulty of their complete separation from
high-yielding conversion of glycosyl bromides to anhy-
droalditols using a Ti(III) borohydride complex.
desired materials can be a drawback in pharmaceutical
applications. We have recently shown12 that simple
Reaction between Cp
2
TiCl
2
and NaBH
4
yields ti-
tanocene borohydride13 (Cp
TiBH
; 1), which we have
2
4
Ti(III) complexes can readily activate glycosyl halides by
halogen atom abstraction, and we now report a simple,
shown reduces activated alkyl halides via a radical
intermediate.14 Since glycosyl radicals are rapidly
formed by reaction between glycosyl bromides and
15
(1) Yamanouchi, T.; Tachibana, Y.; Akanuma, H.; Minoda, S.;
1
6
Shinohara, T.; Moromizato, H.; Miyashita, H.; Akaoka, I. Am. J .
Physiol. 1992, 263, E268.
(Cp
2
TiCl)
2
it was of interest to learn if 1 could effect
reduction of glycosyl halides analogously. Indeed, reduc-
tion of the glycosyl halides by 1 can be accomplished
rapidly and at room temperature (Table 1).
(
2) (a) Yoshioka, S.; Saitoh, S.; Negishi, C.; Fujisawa, T.; Fujimori,
A.; Takatani, O.; Imura, M.; Funabashi, M. Clin. Chem. 1983, 29, 1396.
b) Yoshioka, S.; Saitoh, S.; Seki, S.; Seki, K. Clin. Chem. 1984, 30,
88.
3) (a) Glucosidase: Field, R. A.; Haines, A. H.; Chrystal, E. J . T.
(
1
The mechanism of glycosyl halide reduction likely
involves halogen atom abstraction by Ti(III) to give the
(
Bioorg. Med. Chem. Lett. 1991, 1, 667. (b) Phosphorylase a: Bollen,
M.; Malaisse-Lagae, F.; Malaisse, W.; Stalmans, W. Biochem. Biophys.
Acta 1990, 1038, 141.
•
glycosyl radical (2), which then can abstract H from
17,18
borohydride (Scheme 1).
In support of this sugges-
(4) (a) Barili, P. L.; Berti, G.; Catelani, G.; D’Andrea, F.; Gaudiosi,
tion, we note the formation of 1-deuterio-2,3,4,6-tetra-
O-acetyl-1,5-anhydro-D-glucitol (89% d ) when Cp TiBD
1 2 4
is used as the reducing agent.
A. Gazz. Chim. Ital. 1994, 124, 57. (b) Barili, P. L.; Berti, G.; D’Andrea,
F.; Bussolo, V. D.; Granucci, I. Tetrahedron 1992, 48, 6273. (c) Barili,
P. L.; Berti, G.; D’Andrea, F.; Gaudiosi, A. Carbohydr. Res. 1991, 212,
c5.
(
5) (a) Verheggen, I.; Van Aerschot, A.; Toppet, S.; Snoeck, R.;
J anssen, G.; Balzarini, J .; De Clercq, E.; Herdewijn, P. J . Med. Chem.
993, 36, 2033. (b) Van Aerschot, A.; Verheggen, I.; Herdewijn, P.
(13) (a) N o¨ th H.; Hartwimmer, R. Chem. Ber. 1960, 93, 2238. (b)
Lucas, C. R. Inorg. Synth. 1977, 17, 91.
1
Bioorg. Med. Chem. Lett. 1993, 3, 1013. (c) Huryn, D. M.; Sluboski, B.
C.; Tam, S. Y.; Weigele, M.; Sim, I.; Anderson, B. D.; Mitsuya, H.;
Broder, S. J . Med. Chem. 1992, 35, 2347. (d) Nair, V.; Nuesca, Z. M.
J . Am. Chem. Soc. 1992, 114, 7951.
(14) Liu, Y.; Schwartz, J . Tetrahedron 1995, 51, 4471.
(15) (a) Dupuis, J .; Giese, B.; R u¨ egge, D.; Fischer, H.; Korth, H.-G.;
Sustmann, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 896. (b) Korth,
H.-G.; Sustmann, R.; Dupuis, J .; Giese, B. J . Chem. Soc., Perkin Trans.
2 1986, 1453. (c) Korth, H.-G.; Sustmann, R.; Gr o¨ ninger, K. S.; Witzel,
T.; Giese, B. J . Chem. Soc., Perkin Trans. 2 1986, 1461.
(16) Coutts, R. S. P.; Wailes, P. C.; Martin, R. L. J . Organomet.
Chem. 1973, 47, 375.
(
6) Duclos, A.; Fayet, C.; Gelas, J . Synthesis 1994, 1087.
(7) Richtmyer, N. K.; Carr, C. J .; Hudson, C. S. J . Am. Chem. Soc.
1
943, 65, 1477.
(
(
(
8) Witczak, Z. J . Tetrahedron Lett. 1986, 27, 155.
9) Bennek, J . A.; Gray, G. R. J . Org. Chem. 1987, 52, 892.
10) (a) Ness, R. K.; Fletcher, H. G., J r.; Hudson, C. S. J . Am. Chem.
(17) A small amount (1-5%) of the glycal is sometimes observed,
which might be formed by radical trapping by Ti(III) and Ti(IV)-OAc
elimination (see ref 12).
Soc. 1950, 72, 4547. (b) Funabashi, M.; Hasegawa, T. Bull. Chem. Soc.
J pn. 1991, 64, 2528.
(18) For example, see: Liu, Y.; Schwartz, J . J . Org. Chem. 1994,
59, 940. Aryl radicals photochemically generated from aryl halides
(11) (a) Giese, B.; Dupuis, J . Tetrahedron Lett. 1984, 25, 1349. (b)
-
•
•-
Kocienski, P.; Pant, C. Carbohydr. Res. 1982, 110, 330. (c) Auge, J .;
David, S. Carbohydr. Res. 1977, 59, 255.
react with BH
Bradbury, D. J . Am. Chem. Soc. 1973, 95, 5085. Analogous
abstraction from Ti(IV)BH would give a Ti(III)BH species.
4
by H abstraction to give BH . See: Barltrop, J . A.;
3
•
H
(12) Cavallaro, C. L.; Schwartz, J . J . Org. Chem. 1995, 60, 7055.
4
3
S0022-3263(95)01880-9 CCC: $12.00 © 1996 American Chemical Society