Original
Paper
Phys. Status Solidi A 209, No. 4 (2012)
707
The evaporation, electrodeposition, and sol–gel NiO does
not show better electrochromic characteristics.
[6] W. Estrada, A. M. Anderson, and C. G. Granqvist, J. Appl.
Phys. 64, 3678 (1988).
[7] T. Seike and J. Nagai, Sol. Energy Mater. 22, 107 (1991).
[8] C. Natarajan, H. Matsumoto, and G. Nogami, J. Electrochem.
Soc. 144, 121 (1997).
[9] S. R. Jiang, P. X. Yan, B. X. Feng, X. M. Cai, and J. Wang,
Mater. Chem. Phys. 77, 384 (2002).
[10] T. Maruyama and S. Arai, Sol. Energy Mater. Sol. Cells 30,
257 (1993).
[11] X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and
H. Huang, Electrochim. Acta 53, 5721 (2008).
[12] T. J. Richardson and M. D. Rubin, Electrochim. Acta 46,
2119 (2001).
[13] M. K. Lee and C. H. Fan, J. Electrochem. Soc. 156, 395
(2009).
[14] C. T. Huang, P. H. Chang, and J. S. Shie, J. Electrochem. Soc.
143, 2044 (1996).
[15] T. Homma, T. Katoh, Y. Yamada, and Y. Murao, J. Electro-
chem. Soc. 140, 2410 (1993).
4 Conclusions The growth rate of LPD-NiO film on
ITO/glass is improved to 5.9 nm/h by high photon energy
under UV photo-irradation. The thermal treatment can
transform a-Ni(OH)2 into NiO. For thermally treated NiO
under ultraviolet photo-irradiation, the rms value of surface
roughness is improved to 3.9 nm. The transmittance of
thermally treated LPD-NiO/ITO/glass and UV-NiO/ITO/
glass are 80 and 86% at the wavelength of 550 nm before
electrochromic test. After 50 times electrochromic test, the
colored and bleached transmittance for LPD-NiO are lower
than that of UV-NiO. The electrochromic properties of the
UV-NiO film are better than that of LPD-NiO. These
improvements come from UV-NiO with fewer traps by F
passivation.
[16] A. L. Ortiz, V. H. Collins-Martinez, C. A. Hernandez-
Escobar, S. G. Flores-Gallardo, and E. A. Zaragoza-
Contreras, Mater. Chem. Phys. 109, 306 (2008).
[17] W. Xing, F. Li, Z. F. Yan, and G. Q. Lu, J. Power Sources
134, 324 (2004).
Acknowledgements The authors would like to
acknowledge the support of the National Science Council of the
Republic of China under Contract No. NSC97-2221-E-110-073-
MY3.
[18] I. P. Gerothanassis, N. Birlirakis, C. Sakarellos, and M.
Marraudt, J. Am. Chem. Soc. 114, 9043 (1992).
[19] L. Armelao and S. Gross, J. Sol–Gel Sci. Technol. 26, 993
(2003).
´ ´ ´
[20] S. Deki, A. Hosokawa, A. B. Beleke, and M. Mizuhata, Thin
Solid Films 517, 1546 (2009).
[21] K. Tse and J. Robertsona, Appl. Phys. Lett. 89, 142914
(2006).
[22] X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and
H. Huang, Sol. Energy Mater. Sol. Cells 92, 628 (2008).
[23] C. P. Li, A. Proctor, and D. M. Hercules, Appl. Spectrosc. 38,
880 (1984).
References
[1] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess,
Thin Solid Films 418, 9 (2002).
[2] M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S.
Yamada, Jpn. J. Appl. Phys. 33, 6656 (1994).
[3] K. Yoshimura, T. Miki, and S. Tanemura, Jpn. J. Appl. Phys.
34, 2440 (1995).
[4] P. Puspharajah and S. Radhakrishna, J. Mater. Sci. 32, 3001
(1997).
[5] A. Neubecker, T. Pompl, T. Doll, W. Hansch, and I. Eisele,
Thin Solid Films 310, 19 (1997).
[24] M. Zhang and Y. Nakayama, J. Appl. Phys. 82, 10 (1997).
ß 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim