S. Farhadi, Z. Roostaei-Zaniyani / Polyhedron 30 (2011) 971–975
975
Acknowledgments
The authors gratefully acknowledge the Lorestan University Re-
search Council and Iran Nanotechnology Initiative Council (INIC)
for their financial support.
References
[1] G. Schmidt, Nanoparticles: From Theory to Application, VCH, Weinheim, 2004.
[2] E.T. Goldvurt, B. Kulkarni, R.N. Bhargava, J. Lumin. 72 (1997) 190.
[3] E.F. Hilinske, P.A. Lucas, Y. Wang, J. Chem. Phys. 89 (1988) 3435.
[4] N.R. Jana, Y.F. Chen, X.G. Peng, Chem. Mater. 16 (2004) 3931.
[5] A. Chrissanthopoulos, S. Baskoutas, N. Bouropoulos, V. Dracopoulos, P.
Poulopoulos, S.N. Yannopoulos, Photonics and Nanostructures
[6] W. Wei, X. Jiang, L. Lu, X. Yang, X. Wang, J. Hazard. Mater. 168 (2009) 838.
–
[7] Nagi R.E. Radwan, M.S. El-Shall, Hassan M.A. Hassan, Appl. Catal. A: Gen. 331
(2007) 8.
[8] J.L. Garcia-Miquel, Q. Zhang, S.J. Allen, A. Rougier, A. Blyr, H.O. Davies, Thin
Solid Films 424 (2003) 165.
[9] W.Y. Li, L.N. Xu, J. Chen, Adv. Funct. Mater. 15 (2005) 851.
[10] F. Li, H.Y. Chen, C.M. Wang, K.S. Hu, J. Electroanal. Chem. 531 (2002) 53.
[11] I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators B: Chem. 57
(1999) 147.
Fig. 7. Magnetization versus applied magnetic field at room temperature for the
NiO nanoparticles prepared at 400 °C.
[12] H.X. Yang, Q.F. Dong, X.H. Hu, J. Power Sources 79 (1999) 256.
[13] F.B. Zhang, Y.K. Zhou, H.L. Li, Mater. Chem. Phys. 83 (2004) 260.
[14] X.H. Huang, J.P. Tu, B. Zhang, C.Q. Zhang, Y. Li, Y.F. Yuan, H.M. Wu, J. Power
Sources 161 (2006) 541.
[15] M. Ghosh, K. Biswas, A. Sundaresan, C.N.R. Rao, J. Mater. Chem. 16 (2006) 106.
[16] T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Solid State Sci. 8
(2006) 425.
the equation: (Ahv)2 = B(hv ꢁ Eg), where hv is the photon energy, A
is the absorption coefficient, B is a constant relative to the material.
The inset of Fig. 6 shows the (Ah
m
)2 ꢄ h
m curve for the NiO sample
calcined at 400 °C. By extrapolation of this curve, the band gap is
3.4 eV, revealing a slight red shift in comparison with previous re-
ports [45–47].
[17] M. Borgstrom, E. Blart, G. Boschloo, E. Mukhtar, A. Hagfeldt, L. Hammarstrom, J.
Phys. Chem. B 109 (2005) 22928.
Fig. 7 shows the magnetization versus applied magnetic field
curve at room temperature for the NiO nanoparticles prepared at
400 °C. The hysteresis loop shows a ferromagnetic behavior for
the NiO nanoparticles with a remnant magnetization (Mr) of 0.25
emu/g, which is quite different from the bulk sample [32,48]. The
coercive field (Hc) and the saturation magnetization (Ms) are about
160 Oe and 0.9 emu/g, respectively. The origin of the ferromagnetic
property may be attributed to the size confinement effect of the
NiO nanoparticles [49,50]. Nickel oxide nanoparticles are made of
small magnetic domains. Each magnetic domain is characterized
by its own magnetic moment oriented randomly. The total mag-
netic moment of the nanoparticles is the sum of these magnetic
domains coupled by dipolar interactions. As a result, a low value
of Ms is obtained. The magnetic properties of nanomaterials have
been believed to be highly dependent on the sample shape, crystal-
linity, magnetization direction and so on.
[18] T. Nathan, A. Aziz, A.F. Noor, S.R.S. Prabaharan, J. Solid State Electrochem. 12
(2008) 1003.
[19] C.G. Granqvist (Ed.), Handbook of Inorganic Electrochromic Materials, Elsevier,
Amsterdam, 1995.
[20] X.Y. Deng, Z. Chen, Mater. Lett. 58 (2004) 276.
[21] V.R.R. Pulimi, P. Jeevanandam, J. Magn. Magn. Mater. 321 (2009) 2556.
[22] S.F. Wang, L.Y. Shi, X. Feng, Sh.R. Ma, Mater. Lett. 61 (2007) 1549.
[23] D.Y. Han, H.Y. Yang, C.B. Shen, X. Zhou, F.H. Wang, Powder Tech. 147 (2004)
113.
[24] P. Palanisamy, A.M. Raichur, Mater. Sci. Eng. C 29 (2009) 199.
[25] D.V. Lysov, D.V. Kuznetsov, A.G. Yudin, D.S. Muratov, V.V. Levina, D.I.
Ryzhonkov, Nanotechnologies in Russia 5 (2010) 493.
[26] E.R. Beach, K. Shqau, S.E. Brown, S.J. Rozeveld, P.A. Morris, Mater. Chem. Phys.
115 (2009) 371.
[27] E. Beach, S. Brown, K. Shqau, M. Mottern, Z. Warchol, P. Morris, Mater. Lett. 62
(2008) 1957.
[28] Z. Wei, H. Qiao, H. Yang, C. Zhang, X. Yan, J. Alloys Compd. 479 (2009) 855.
[29] T.L. Lai, Y.Y. Shub, G.L. Huangb, C.C. Lee, C.B. Wang, J. Alloys Compd. 450 (2008)
318.
[30] A. Surca, B. Orel, B. Pihlar, P. Bukovec, J. Electroanal. Chem. 408 (1996) 83.
[31] Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, H. Wan, Mater. Lett. 61 (2007) 3174.
[32] S. Thota, J. Kumar, J. Phys. Chem. Solids 68 (2007) 1951.
[33] W.N. Wang, Y. Itoh, I.W. Lenggoro, K. Okuyama, Mater. Sci. Eng. B 111 (2004)
69.
4. Conclusions
[34] I.W. Lenggoroa, Y. Itoh, N. Iid, K. Okuyama, Mater. Res. Bull. 38 (2003) 1819.
[35] E. Traversa, M. Sakamoto, Y. Sadaoka, Part. Sci. Technol. 16 (1998) 185.
[36] M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N.
Yavarinia, Inorg. Chim. Acta 362 (2009) 3691.
[37] F. Davar, Z. Fereshteh, M. Salavati-Niasari, J. Alloys Compd. 476 (2009) 797.
[38] M. Salavati-Niasari, N. Mir, F. Davar, Polyhedron 28 (2009) 1111.
[39] X. Li, X. Zhang, Z. Li, Y. Qian, Solid State Commun. 137 (2006) 581.
[40] S. Farhadi, N. Rashidi, J. Alloys Compd. 503 (2010) 439.
[41] S. Farhadi, N. Rashidi, Polyhedron 503 (2010) 439.
[42] H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, second ed., Wiley, New
York, 1964.
[43] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds Part B: Applications in Coordination, sixth ed., Organometallic and
Bioinorganic Chemistry, Wiley, New York, 2009.
[44] C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, J. Colloid Interface Sci. 333
(2009) 242.
In summary, pure and nanosized NiO particles with an average
particle size of 15 nm were successfully synthesized through ther-
mal decomposition of the [Ni(en)3](NO3)2 complex as a precursor
at 400 °C. From this complex, NiO is formed via the explosive
decomposition of the [Ni(en)3](NO3)2 complex due to a redox pro-
cess taking place between the reductants (en ligands) and the oxi-
dants (NO3ꢁ). By this method, uniform and spherical NiO
nanoparticles with weak agglomeration, narrow size distribution
and ferromagnetic behavior can be obtained. The optical absorp-
tion band gap of the NiO nanoparticles is 3.4 eV, which shows a
red shift in comparison with the bulk sample. This method is sim-
ple, low-cost, safe and suitable for industrial production of high
purity NiO nanoparticles for various applications. We expect that
this method of precursor thermal decomposition can be extended
to synthesize nanoparticles of other kinds of metal oxides using
the corresponding precursors.
[45] G. Boschloo, A. Hagfeldt, J. Phys. Chem. B. 195 (2001) 3039.
[46] X. Chen, Z. Zhang, C. Shi, X. Li, Mater. Lett. 62 (2008) 346.
[47] Z. Chen, A. Xu, Y. Zhang, N. Gu, Curr. Appl. Phys. 10 (2010) 967.
[48] A.T. Ngo, P. Bonville, M.P. Pileni, Eur. Phys. J. B 9 (1999) 583.
[49] M. Salavati-Niasari, Z. Fereshteh, F. Davar, Polyhedron 28 (2009) 1065.
[50] Q. Li, L.S. Wang, B.Y. Hu, C. Yang, L. Zhou, L. Zhang, Mater. Lett. 61 (2007) 1615.