trochemical properties. These materials have high quantum
yield, and can be modified by various substituents at the 1-,
6-, and 8-position of the pyrene core, which might tune their
absorption and emission spectra.5 The self-assembly of
pyrene and its derivatives into aggregates with controlled
nanostructures has attracted significant interest due to the
potential applications on optoelectronic devices, sensors, as
well as models for photosynthesis.6 Chiral acids are the
common and important structural units in many natural
products and drug molecules.7 In particular, chiral amino
acids are not only biologically important but also useful
substances for chiral auxiliaries and building blocks in
organic synthesis.8 Integration of these biologically important
small molecules and functional organic molecules provides
access to supramolecular nanoarchitectures that are capable
of converting biomolecular structural information to phys-
icochemical signals. For example, in the group of David K.
Smith, excellent low molecular weight gelators were devel-
oped that possess a toluene core extended with dendritic
amino acid derivatives.9 Yashima and co-workers also
reported hierarchical amplification of chirality information
from amino acid derivatives to the dynamic helical poly-
acetylene.10 To date, many studies on self-assembly of
biological molecules have been focused on biopolymers such
as proteins, oligopeptides, and nucleic acids.11 However,
biologically small molecules that graft into chromophores
through noncovalent interaction to create functional supra-
molecular systems also show great potential.
Herein, we describe self-assembly and thermochromic
supramolecular behavior of a positively charged pyrene
derivative (PyDNH3) in the presence of the negatively
charged tryptophan derivatives (TrpCO2) (Scheme 1). The
Scheme 1. Structure of Compound PyDNH3 and Chiral
Tryptophan TrpCO2
electrostatic repulsions between the positively charged
terminal units of compound PyDNH3 and the ammonium
ion of the amino acid may disturb the attractive interaction
because amino acids exist in the zwitterionic form. Therefore,
N-protected amino acids with Boc groups were used. For
L-TrpCO2 a negative Cotton effect was observed at the
longest wavelength, indicating an M-helical arrangement of
the chromophores and the D-TrpCO2 induced P-helicity
under acidic conditions.
(4) (a) Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644.
(b) Palmans, A. R. A.; Meijer, E. W. Angew. Chem., Int. Ed. 2007, 46,
8948. (c) George, S. J.; Ajayaghosh, A.; Jonkheijm, P.; Schenning, A. P.
H. J.; Meijer, E. W. Angew. Chem., Int. Ed. 2004, 43, 3422. (d) Ajayaghosh,
A.; Vijayakumar, C.; Varghese, R.; George, S. J. Angew. Chem., Int. Ed.
2006, 45, 456. (e) Ajayaghosh, A.; Varghese, R.; George, S. J.; Vijayakumar,
C. Angew. Chem., Int. Ed. 2006, 45, 1141. (f) Ajayaghosh, A.; Varghese,
R.; Mahesh, S.; Praveen, V. K. Angew. Chem., Int. Ed. 2006, 45, 7729.
(5) (a) Laurent, A. Ann. Chim. Phys. 1837, 66, 136. (b) Winnick, F. W.
Chem. ReV. 1993, 93, 587. (c) Sachiko, S.; Tojo, S.; Fujitsuka, M.; Yang,
S. W.; Ho, T. I.; Yang, J. S.; Majima, T. J. Phys. Chem. B 2006, 110,
13296. (d) Rausch, D.; Lambert, C. Org. Lett. 2006, 8, 5037. (e) Jaska, C.
A.; Piers, W. E.; McDonald, R.; Parvez, M. J. Org. Chem. 2007, 72, 5234.
(6) (a) Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y.; Yamazaki,
I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 100. (c) Seo, Y.
J.; Ryu, J. H.; Kim, B. H. Org. Lett. 2005, 7, 4931. (d) Cuppoletti, A.;
Cho, Y.; Park, J. S.; Stra¨ssler, C.; Kool, E. T. Bioconj. Chem. 2005, 16,
528. (e) Li, Y. J.; Li, H.; Li, Y. L.; Liu, H. B.; Wang, S.; He, X. R.; Wang,
N.; Zhu, D. B. Org. Lett. 2005, 7, 4835. (f) Xiao, J. C.; Li, Y. J.; Song, Y.
B.; Jiang, L.; Li, Y. L.; Wang, S.; Liu, H. B.; Xu, W.; Zhu, D. B.
Tetrahedron Lett. 2007, 48, 7599.
(7) (a) Coppola, G. M.; Schuster, H. F. R-Hydroxyl Acids in Enantio-
selectiVe Syntheses; VCH: Weinheim, Germany, 1997. (b) Aboul-Enein,
H. Y.; Wainer, I. M., Eds. The Impact of stereochemistry on Drug
DeVelopment and Use; John Wiley & Sons: New York, 1997. (c) Challener,
C. A., Ed. Chiral Intermediates; Ashgate: Hampshire, UK, 2001.
(8) (a) Kuhn, L. A.; Thorpe, M. F. Protein Flexibility and Folding;
Elsevier: Amsterdam, The Netherlands, 2001. (b) Jons, J. Amino Acid and
Peptide Synthesis, 2nd ed.; Oxford University Press: Oxford, England, 2002.
(9) (a) Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.; Wright,
A. C. J. Am. Chem. Soc. 2003, 125, 9010. (b) Hirst, A. R.; Smith. M. C.;
Feiters, M. C.; Geurts, H. P. M. Langmuir 2004, 20, 7070. (c) Huang, B.
H.; Hirst, A. R.; Smith, D. K.; Castelletto, V.; Hamley, L. W. J. Am. Chem.
Soc. 2005, 127, 7130. (d) Coates, I. A.; Hirst, A. H.; Smith, D. K. J. Org.
Chem. 2007, 72, 3937.
Amphiphilic PyDNH3 consists of an aromatic ethynyl-
pyrene moiety and ammonium group which are linked at
both ends of the aromatic core. The synthesis of PyDNH3
is given in the Supporting Information.12 TrpCO2 was
obtained according to known literature methods.13 The
resulting molecules were characterized by 1H NMR and 13
C
NMR and MALDI-TOF mass spectroscopies, which were
shown to be in full agreement with the structures presented.
The positively charged PyDNH3 exhibits good solubility
in polar solvents such as ethanol, acetonitrile, and DMSO.
PyDNH3 in ethanol (5 × 10-5 M) shows the monomeric
absorption peak with λmax at 394 and 413 nm (for the ethynyl-
pyrene core). It exhibits the emission maxima at 429 and
451 nm with a shoulder at 479 nm upon excitation at 390
nm (Figure S3, Supporting Information). The absorption of
PyDNH3 in ethanol/water (v/v, 8:92) shows similar maxima
at 394 and 413 nm. In comparison, the fluorescence was
obviously quenched in mixed solvents. The quantum yields
(Φf) of PyDNH3 in ethanol and water were measured as Φf
) 0.47 and 0.04, respectively, with quinine sulfate as
standard at 25 °C. These observations support intermolecular
chromophore interaction in water and the consequent exciton
coupling of the confined chromophores.
Aggregation was observed upon addition of chiral tryp-
tophan to PyDNH3 solution, which was strongly affected
(10) (a) Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromol-
ecules 2000, 33, 4616. (b) Maeda, K.; Ishikawa, M.; Yashima, E. J. Am.
Chem. Soc. 2004, 126, 15161. (c) Nagai, K.; Sakajiri, K.; Maeda, K.; Okoshi,
K.; Sato, T.; Yashima, E. J. Macromolecules 2006, 39, 5371.
(11) (a) Seeman, N. C. Acc. Chem. Res. 1997, 30, 357. (b) Ringler, P.;
Schulz, G. E. Science 2003, 302, 106. (c) Zhang, S. Nat. Biotechnol. 2003,
21, 1171. (d) Hannah, K. C.; Armitage, B. A. Acc. Chem. Res. 2004, 37,
845. (e) Kim, O. K.; Je, J.; Jernigan, G.; Buckley, L.; Whitten, D. J. Am.
Chem. Soc. 2006, 128, 510.
(12) (a) Lee, J.; Kang, S. U.; Lim, J. O.; Choi, H. K.; Jin, M. K.; Toth,
A.; Pearce, L. V.; Tran, R.; Wang, Y.; Szabo, T.; Blumberg, P. M. Bioorg.
Med. Chem. 2004, 12, 371. (b) Leroy-Lhez, S.; Fages, F. Eur. J. Org. Chem.
2005, 2684.
(13) (a) Pastor, I. M.; Va¨stila¨, P.; Adolfsson, H. Chem. Eur. J. 2003, 9,
4031. (b) Nagai, K.; Maeda, K.; Takeyama, Y.; Sakajiri, K.; Yashima, E.
Macromolecules 2005, 38, 5444.
646
Org. Lett., Vol. 10, No. 4, 2008