Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 19 6865
7.70 (6H, bs), 7.58 (2H, s), 6.00 (4H, s), 3.63-3.56 (4H, m), 2.90
(4H, t), 1.97-1.89 (4H, m). LCMS: Tr = solvent front, 95%
purity; m/z (%) = 354 (95), [M þ H]þ 325 (100).
van Oosterom, A. T.; Smyth, J. F. Mitoxantrone for the treatment of
advanced breastcancer: single-agent therapy in previously untreated
patients. Eur. J. Cancer Clin. Oncol. 1984, 20, 1141–1146.
(7) Durr, F. E. Anthracyclines and Anthracenedione-Based Anticancer
Agents; Elsevier: Amsterdam, 1988.
(8) Pratt, W. B.; Ruddon, R. W.; Ensminger, W. D.; Maybaum, J. The
Anticancer Drugs; Oxford University Press: New York, 1994.
(9) Burden, D. A.; Osheroff, N. Mechanism of action of eukaryotic
topoisomerase II and drugs targeted to the enzyme. Biochim.
Biophys. Acta 1998, 1400, 139–154.
(10) Faulds, D.; Balfour, J. A.; Chrisp, P.; Langtry, H. D. Mitoxantrone.
A review of its pharmacodynamic and pharmacokinetic properties,
and therapeutic potential in the chemotherapy of cancer. Drugs
1991, 41, 400–449.
(11) Parker, B. S.; Cutts, S. M.; Cullinane, C.; Phillips, D. R. For-
maldehyde activation of mitoxantrone yields CpG and CpA
specific DNA adducts. Nucleic Acids Res. 2000, 28, 982–990.
(12) Parker, B. S.; Cullinane, C.; Phillips, D. R. Formation of DNA
adducts by formaldehyde-activated mitoxantrone. Nucleic Acids
Res. 1999, 27, 2918–2923.
(13) Zeman, S. M.; Phillips, D. R.; Crothers, D. M. Characterization of
covalent adriamycin-DNA adducts. Proc. Natl Acad. Sci. U.S.A.
1998, 95, 11561–11565.
(14) Thorndike, J.; Beck, W. S. Production of formaldehyde from
N5-methyltetrahydrofolate by normal and leukemic leukocytes.
Cancer Res. 1977, 37, 1125–1132.
(15) Taatjes, D. J.; Gaudiano, G.; Resing, K.; Koch, T. H. Redox
pathway leading to the alkylation of DNA by the anthracycline,
antitumor drugs adriamycin and daunomycin. J. Med. Chem. 1997,
40, 1276–1286.
(16) Taatjes, D. J.; Gaudiano, G.; Koch, T. H. Production of formal-
dehyde and DNA-adriamycin or DNA-daunomycin adducts,
initiated through redox chemistry of dithiothreitol/iron, xanthine
oxidase/NADH/iron, or glutathione/iron. Chem. Res. Toxicol.
1997, 10, 953–961.
(17) Parker, B. S.; Buley, T.; Evison, B. J.; Cutts, S. M.; Neumann,
G. M.; Iskander, M. N.; Phillips, D. R. A molecular understanding
of mitoxantrone-DNA adduct formation: effect of cytosine methy-
lation and flanking sequences. J. Biol. Chem. 2004, 279, 18814–
18823.
(18) Cutts, S. M.; Nudelman, A.; Rephaeli, A.; Phillips, D. R. The
power and potential of doxorubicin-DNA adducts. IUBMB Life
2005, 57, 73–81.
(19) Cutts, S. M.; Nudelman, A.; Pillay, V.; Spencer, D. M.; Levovich,
I.; Rephaeli, A.; Phillips, D. R. Formaldehyde-releasing prodrugs
in combination with adriamycin can overcome cellular drug resis-
tance. Oncol. Res. 2005, 15, 199–213.
(20) Wang, A. H.; Gao, Y. G.; Liaw, Y. C.; Li, Y. K. Formaldehyde
cross-links daunorubicin and DNA efficiently: HPLC and X-ray
diffraction studies. Biochemistry 1991, 30, 3812–3815.
(21) Bailly, C.; Goossens, J. F.; Laine, W.; Anizon, F.; Prudhomme, M.;
Ren, J.; Chaires, J. B. Formaldehyde-induced alkylation of a
20-aminoglucose rebeccamycin derivative to both A.T and G.C
base pairs in DNA. J. Med. Chem. 2000, 43, 4711–4720.
(22) Borchmann, P.; Reiser, M. Pixantrone (Novuspharma). Idrugs
2003, 6, 486–490.
(23) Beggiolin, G.; Crippa, L.; Menta, E.; Manzotti, C.; Cavalletti, E.;
Pezzoni, G.; Torriani, D.; Randisi, E.; Cavagnoli, R.; Sala, F.;
Giuliani, F. C.; Spinelli, S. Bbr 2778, an aza-anthracenedione
endowed with preclinical anticancer activity and lack of delayed
cardiotoxicity. Tumori 2001, 87, 407–416.
(24) Evison, B. J.; Mansour, O. C.; Menta, E.; Phillips, D. R.; Cutts,
S. M. Pixantrone can be activated by formaldehyde to generate a
potent DNA adduct forming agent. Nucleic Acids Res. 2007, 35,
3581–3589.
(25) Evison, B. J.; Chiu, F.; Pezzoni, G.; Phillips, D. R.; Cutts, S. M.
Formaldehyde-activated Pixantrone is a monofunctional DNA
alkylator that binds selectively to CpG and CpA doublets. Mol.
Pharmacol. 2008, 74, 184–194.
(26) Nudelman, A.; Ruse, M.; Aviram, A.; Rabizadeh, E.; Shaklai, M.;
Zimrah, Y.; Rephaeli, A. Novel anticancer prodrugs of butyric
acid. 2. J. Med. Chem. 1992, 35, 687–694.
6,9-Bis(4-aminobutylamino)benzo[g]isoquinoline-5,10-dione
Dihydrochloride 9. A mixture of the difluoro dione 16 (75 mg,
0.31 mmol) and 1,4-diaminobutane (297 μL, 3.1 mmol) in THF
(5 mL) was stirred at 50 ꢀC for 20 h. The solution was cooled and
the precipitate was filtered off and washed with THF. The filtrate
was concentrated in vacuo and the residue dried under a stream of
nitrogen to aid in removal of excess amine. The residue was dis-
solved in MeOH (2 mL), and a solution of 1.25 N HCl in MeOH
(1.86 mmol) was added. A sufficient volume of EtOAc was added,
and a precipitate developed. The solid was filtered off and washed
with EtOAc to afford the dihydrochloride 9 as a dark-blue solid
(90 mg, 67%).29 IR νmax 2934, 1568, 1531, 1279, 1174, 838 cm-1
.
HRESMS found: (M þ H) 382.2246; C21H27N5O2 requires (M þ
H), 382.2243. 1H NMR (DMSO) δ 11.20 (1H, t), 11.10 (1H, t),
9.44 (1H, s), 8.95 (1H, d), 8.05 (1H, d), 7.85 (6H, bs), 7.59 (2H, s),
3.60-3.50 (4H, m), 2.90-2.80 (4H, m), 1.75-1.65 (8H, m).
LCMS: Tr = 4.29, 95% purity; m/z (%) = 381 (2.5), [M þ H]þ
311 (50), 240 (100).
6,9-Bis(5-aminopentylamino)benzo[g]isoquinoline-5,10-dione
Dihydrochloride 10. A mixture of the difluoro dione 16 (75 mg,
0.31 mmol) and 1,5-diaminopentane (360 μL, 3.1 mmol) in THF
(5 mL) was stirred at 50 ꢀC for 20 h. The solution was cooled,
and the precipitate was filtered off and washed with THF. The
filtrate was concentrated in vacuo and the residue dried under a
stream of nitrogen to aid in removal of excess amine. The residue
was dissolved in MeOH (2 mL), and a solution of 1.25 N HCl
in MeOH (1.86 mmol) was added. A sufficient volume of EtOAc
was added, and a precipitate developed. The solid was filtered off
and washed with EtOAc to yield the dihydrochloride 10 as a dark-
bluesolid(70 mg, 51%). IRνmax 2934, 1573, 1391, 1171, 830 cm-1
.
HRESMS found: (M - H) 408.2387; C23H31N5O2 requires (M -
H), 408.2400. 1H NMR (DMSO) δ 11.27 (1H, bs), 11.14 (1H, bs),
9.45 (1H, s), 8.95 (1H, d), 8.09 (1H, d), 7.95 (6H, bs), 7.59 (2H, s),
3.55-3.45 (4H, m), 2.85-2.75 (4H, m), 1.71-1.60 (8H, m),
1.50-1.45 (4H, m). LCMS: Tr = solvent front, 95% purity; m/z
(%) = 409 (10), [M þ H]þ 325 (100).
Acknowledgment. This work was supported by grants from
the National Health and Medical Research Council, Australia
(grant number 487333) (S.M.C., D.R.P., and K.G.W.) and
CASS Foundation, Melbourne, Australia (grant number SM/
08/1971) (S.M.C., B.E.).
Supporting Information Available: The full data set for DNA
sequence specificity of all anthracenedione derivatives. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Beljanski, V.; Marzilli, L. G.; Doetsch, P. W. DNA damage-
processing pathways involved in the eukaryotic cellular response
to anticancer DNA cross-linking drugs. Mol. Pharmacol. 2004, 65,
1496–1506.
(2) Goldenberg, G.Tannock, I.Drug resistance and experimental
chemotherapy. In The Basic Science of Oncology; McGraw-Hill:
New York 1998; pp 392-419
(3) Feofanov, A.; Sharonov, S.; Kudelina, I.; Fleury, F.; Nabiev, I.
Localization and molecular interactions of mitoxantrone within
living K562 cells as probed by confocal spectral imaging analysis.
Biophys. J. 1997, 73, 3317–3327.
(4) Feofanov, A.; Sharonov, S.; Fleury, F.; Kudelina, I.; Nabiev, I.
Quantitative confocal spectral imaging analysis of mitoxantrone
within living K562 cells: intracellular accumulation and distribu-
tion of monomers, aggregates, naphtoquinoxaline metabolite, and
drug-target complexes. Biophys. J. 1997, 73, 3328–3336.
(5) De Vita, V. T.; Hellman, S.; Rosenberg, S. A. Cancer;Principles
and Practice of Oncology; J.B. Lippincott: Philadelphia, PA, 1993.
(6) Cornbleet, M. A.; Stuart-Harris, R. C.; Smith, I. E.; Coleman,
R. E.; Rubens, R. D.; McDonald, M.; Mouridsen, H. T.; Rainer, H.;
(27) Cullinane, C.; Phillips, D. R. Thermal stability of DNA adducts
induced by cyanomorpholinoadriamycin in vitro. Nucleic Acids
Res. 1993, 21, 1857–1862.
(28) Krapcho, A. P.; Getahun, Z.; Avery, K. J. The Synthesis of 1,4-
Difluoro-5,8-Dihydroxyanthracene-9,10-Dione and Ipso Substitu-
tionsoftheFluoridesbyDiaminesLeadingto1,4-Bis-[(Aminoalkyl)-
Amino]-5,8-Dihydroxyanthracene-9,10-Diones. Synth. Commun.
1990, 20, 2139–2146.
(29) Krapcho, A. P.; Petry, M. E.; Getahun, Z.; Landi, J. J., Jr.;Stallman,
J.;Polsenberg, J. F.; Gallagher, C. E.;Maresch, M. J.;Hacker, M. P.;