Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 6
COMMUNICATION
0.66 μg Pt/g tumor) in the same Pt dosage (Figure S20). While
ChemComm
(
Notes and references
1
DOI: 10.1039/D0CC05422D
(a) T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem.
the high drug accumulation is consistent with the higher in
vivo antitumor effect of Pt-furoxan, the half dosage of Pt-
furoxan (1.0 mg Pt/kg) led to a similar drug accumulation (0.68
μg Pt/g tumor) relative to cisplatin in a dosage of 2 mg Pt/kg,
even though the low dosage of Pt-furoxan demonstrated high
antitumor effect than cisplatin. This result reveals that, in
addition to drug accumulation in tumor, the function of
platinum agents, such as NO releasing of Pt-furoxan in this
study, contributes significantly to the antitumor efficacy.
The systemic toxicity of Pt-furoxan was monitored with
body weight during the treatment. Pt-furoxan did not alter the
growth of mice in both dosages, suggesting the low toxicity of
the drug (Figure 5C). By comparison, cisplatin clearly
decreased the body weight of mice, and even one mouse died
during the treatment of cisplatin. Moreover, to analyze the
toxicity of these platinum complexes to major organs, heart,
liver, spleen, lung and kidney of mice from drug experimental
groups were collected and stained with H&E. Cisplatin clearly
caused kidney damage, whereas no obvious damage was
observed with the treatment of Pt-furoxan or other platinum
agents (Figure S21).
The anti-metastasis effect of Pt-furoxan was also analyzed in
vivo on the 4T1 breast tumor bearing mice model. After 14-day
treatment of these platinum complexes, lung tissues were
stained with H&E dying to analyze the pulmonary migration of
cancer cells. The results showed that Pt-furoxan detectably
inhibited the metastasis of cancer cells to lungs (Figure 5E), in
agreement with the in vitro results of anti-metastasis assay.
In summary, a novel NO-releasing Pt(IV) complex, Pt-furoxan
was designed and synthesized in this work. Pt-furoxan can
release cisplatin and NO in cells. While cisplatin causes the
apoptosis of tumor cells, the NO released in cells modulates
cell response and enhanced the potency of cisplatin. Therefore,
Pt-furoxan exhibits synergistic effect on the inhibition of tumor
growth. In vitro and in vivo experiments indicate that Pt-
furoxan is more potent than cisplatin. Meanwhile, Pt-furoxan
possesses lower systemic toxicity than cisplatin. Moreover, Pt-
furoxan effectively inhibits the migration of cancer cells in vitro
and tumor metastasis in mice model. Further investigations
indicate that Pt-furoxan can suppress the activity of MMP9 and
MMP2, two key steps of tumor metastasis. In addition, Pt-
furoxan efficiently inhibits the adhesion of tumor cells to
vascular endothelial cells. These findings indicate that Pt-
furoxan possesses dual function of anti-proliferation and anti-
metastasis, and exhibits lower systemic toxicity in vivo.
Rev., 2016, 116, 3436-3486; (b) F. Cardoso, S. Kyriakides, S.
Ohno, F. Penault-Llorca, P. Poortmans, I. T. Rubio, S.
Zackrisson, E. Senkus, E. G. Committee, Ann. Oncol., 2019, 30
,
,
1
194-1220; (c) M. Abotaleb, P. Kubatka, M. Caprnda, E.
Varghese, B. Zolakova, P. Zubor, R. Opatrilova, P. Kruzliak, P.
Stefanicka, D. Büsselberg, Biomed. Pharmacother., 2018, 101
4
58-477.
2
(a) W. Liu, W. Wang, X. Wang, C. Xu, N. Zhang, W. Di, Cancer
Lett., 2020, 472, 59-69; (b) I. Keklikoglou, C. Cianciaruso, E.
Güç, M. L. Squadrito, et al, Nat. Cell Biol., 2019, 21, 190-202;
(
c) G. S. Karagiannis, J. M. Pastoriza, Y. Wang, A. S. Harney, D.
Entenberg, J. Pignatelli, V. P. Sharma, E. A. Xue, E. Cheng, T.
M. D'Alfonso, J. G. Jones, J. Anampa, T. E. Rohan, J. A.
Sparano, J. S. Condeelis, M. H. Oktay, Sci. Transl. Med., 2017,
9
(397); (d) Y. S. Chang, S. P. Jalgaonkar, J. D. Middleton, T.
Hai, Proc. Natl. Acad. Sci. U S A, 2017, 114, E7159-E7168.
(a) C. W. S. Tong, M. Wu, W. C. S. Cho, K. K. W. To, Front.
3
Oncol., 2018,
8, 227; (b) H. Sancho-Garnier, M. Colonna,
Presse. Med., 2019, 48, 1076-1084; (c) N. Li, Y. Deng, L. Zhou,
T. Tian, S. Yang, Y. Wu, Y. Zheng, Z. Zhai, Q. Hao, D. Song, D.
Zhang, H. Kang, Z. Dai, J. Hematol. Oncol., 2019, 12, 140.
4
5
V. Venkatesh, P. J. Sadler, Met. Ions Life Sci.,2018, 18,69-108.
(a) A. Kamm, P. Przychodzen, A. Kuban-Jankowska, D.
Jacewicz, A. M. Dabrowska, S. Nussberger, M. Wozniak, M.
Gorska-Ponikowska, Nitric Oxide, 2019, 93, 102-114; (b) C.
Farah, L. Y. M. Michel, J. L. Balligand, Nat. Rev. Cardiol., 2018,
15, 292-316.
6
7
(a) Y. Gao, S. Zhou, Y. Xu, S. Sheng, S. Y. Qian, X. Huo, Nitric
Oxide, 2019, 83, 33-39; (b) J. M. Fahey, A. W. Girotti, Cancers,
2
019, 11, 231; (c) F. Vannini, K. Kashfi, N. Nath, Redox Boil.,
2015, , 334-343.
(a) D. Fukumura, S. Kashiwagi, R. K. Jain, Nat. Rev. Cancer,
006, , 521-534; (b) A. W. Carpenter, M. H. Schoenfisch,
Chem. Soc. Rev., 2012, 41, 3742-3752; (c) A. J. Burke, F. J.
6
2
6
Sullivan, F. J. Giles, S. A. Glynn, Carcinogenesis, 2013, 34
,
5
2
03-512;(d) L. B. Vong, Y. Nagasaki, Antioxidants (Basel),
020, 9,791.
8
9
(a) L. Jia, J. Schweizer, Y. Wang, C. Cerna, H. Wong, M. Revilla,
Biochem. Pharmacol., 2003, 66, 2193-2199; (b) E. Hays, B.
Bonavida, Antioxidants, 2019,
8, 407; (c) H. Alimoradi, K.
Greish, A. Barzegar-Fallah, L. Alshaibani, V. Pittala, Int. J.
Nanomedicine, 2018, 13, 7771-7787.
(a) L. Zhou, H. Zhang, J. Wu, Exp. Ther. Med., 2016, 11, 1875-
1
880; (b) Y. Lu, T. Yu, H. Liang, J. Wang, J. Xie, J. Shao, Y. Gao,
S. Yu, S. Chen, L. Wang, L. Jia, Sci. Rep., 2014,
4, 4344; (c) F.
Kang, J. Zhu, J. Wu, T. Lv, H. Xiang, J. Tian, Y. Zhang, Z. Huang,
Chem. Sci., 2018, 9, 6893-6898; (d) C. Bai, R. Xue, J. Wu, T. Lv,
X. Luo, Y. Huang, Y. Gong, H. Zhang, Y. Zhang, Z. Huang,
Chem. Commun., 2017, 53, 5059-5062.
1
1
0 P. G. Wang, M. T. Xian, X.P.Tang, X. J. Wu, Z. Wen, T. W. Cai,
A. J. Janczuk, Chem. Rev., 2002, 102, 1091-1134.
1 (a) J. Zhao, S. Gou, Y. Sun, R. Yin, Z. Wang, Chem. Eur. J., 2012,
18, 14276-14281; (b) L. Zhang, S. Hou, B. Li, et al, Onco.
Targets Ther., 2018, 11, 361-373; (c) K. Tian, F. Xu, X. Gao, et
al, Eur. J. Med. Chem., 2017, 136, 131-143; (d) S. Pramanick, J.
Kim, J. Kim, G. Saravanakumar, D. Park, W. J. Kim, Bioconjug.
Chem., 2018, 29, 885-897; (e) W. Duan, J. Li, E. S. Inks, C. J.
Chou, Y. Jia, X. Chu, X. Li, W. Xu, Y. Zhang, J. Med. Chem.,
2
015, 58, 4325-4338; (f) Q. G. Ding, J. Zang, S. Gao, Q. Gao,
W. Duan, X. Li, W. Xu, Y. Zhang, Drug Discov. Ther., 2017, 10
76-284.
2 L. L. Fershtat, N. N. Makhova, ChemMedChem, 2017, 12, 622-
38.
,
2
This work was supported by National Key R&D Program of
China (2017YFA0505400), the National Natural Science
Foundation of China (21877103), the Anhui Provincial Natural 13 J. J. Wilson, S. J. Lippard, Chem. Rev. 2014, 114, 4470-4495.
Science Foundation (1908085QB77) and the China
Postdoctoral Science Foundation (2019M662207). A portion of
this work was performed on the Steady High Magnetic Field
Facilities, High Magnetic Field Laboratory, CAS.
1
6
1
1
1
1
4 X. Wang, X. Wang, S. Jin, N. Muhammad, Z. Guo, Chem. Rev.,
2
018, 119, 1138-1192.
5 I. T. Schiefer, L. VandeVrede, M. Fa, O. Arancio, G. R.
Thatcher, J. Med. Chem., 2012, 55, 3076-3087.
6 J. Zhao, S. Gou, Y. Sun, L. Fang, Z. Wang, Inorg. Chem., 2012,
51, 10317-10324.
7 (a) C. Szabo, Nat. Rev. Drug Discov., 2016, 15, 185-203; (b) C.
J. Reinhardt, E. Y. Zhou, M. D. Jorgensen, G. Partipilo, J. Chan,
J. Am. Chem. Soc., 2018, 140, 1011-1018; (c) U. Forstermann,
W. C. Sessa, Eur. Heart J., 2012, 33, 829-837.
Conflicts of interest
1
8 H. Cheng, L. Wang, M. Mollica, A. T. Re, S. Wu, L. Zuo, Cancer
Lett., 2014, 353, 1-7.
T
here are no conflicts to declare
4
| Chem. Commun., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins