1
66
J. Mansfeld, R. Ulbrich-Hofmann / Chemistry and Physics of Lipids 150 (2007) 156–166
Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K., 2001.
The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a
novel phospholipase A1 catalyzing the initial step of jasmonic
acid biosynthesis, which synchronizes pollen maturation, anther
dehiscence, and flower opening in Arabidopsis. Plant Cell 13,
Pl u¨ ckthun, A., Dennis, E.A., 1981. Phosphorus-31 nuclear magnetic
resonance study on the incorporation of monomeric phospholipids
into nonionic detergent micelles. J. Phys. Chem. 85, 678–683.
Shipolini, R.A., Callewaert, G.L., Cottrell, R.C., Doonan, S., Vernon,
C.A., Banks, B.E., 1971. Phospholipase A from bee venom. Eur.
J. Biochem. 20, 459–468.
2
191–2209.
Jain, M.K., Rogers, J., Berg, O.G., Gelb, M.H., 1991a. Interfacial catal-
ysis by phospholipase A2: activation by substrate replenishment.
Biochemistry 30, 7340–7348.
Six, D.A., Dennis, E.A., 2000. The expanding superfamily of phospho-
lipase A2 enzymes: classification and characterization. Biochim.
Biophys. Acta 1488, 1–19.
Jain, M.K., Yu, B.-Z., Rogers, J., Ranadive, G.N., Berg, O.G., 1991b.
Interfacial catalysis by phospholipase A2: dissociation constants
for calcium, substrate, products, and competitive inhibitors. Bio-
chemistry 30, 7306–7317.
Kasurinen, J., Vanha-Perttula, T., 1987. An enzymatic colorimetric
assay of calcium-dependent phospholipase A. Anal. Biochem. 164,
Smith, R., Tanford, C., 1972. The critical micelle concentration of l-
␣-dipalmitoyl-phosphatidylcholine in water and water–methanol
solutions. J. Mol. Biol. 67, 75–83.
Soloff, M.S., Jeng, Y.J., Copland, J.A., Strakova, Z., Hoare,
S., 2000. Signal pathways mediating oxytocin stimulation of
prostaglandinsynthesisinselecttargetcells. Exp. Physiol. 85, 51S–
58S.
9
6–101.
Lee, H.Y., Bahn, S.C., Shin, J.S., Hwang, I., Back, K., Doelling, J.H.,
Ryu, S.B., 2005. Multiple forms of secretory phospholipase A2 in
plants. Progr. Lipid Res. 44, 52–67.
Lin, G., Noel, J., Loffredo, W., Stable, H.Z., Tsai, M.D., 1988. Use of
short-chain cyclopentano-phosphatidylcholines to probe the mode
of activation of phospholipase A2 from bovine pancreas and bee
venom. J. Biol. Chem. 263, 13208–13214.
Mansfeld, J., Gebauer, S., Dathe, K., Ulbrich-Hofmann, R., 2006.
Secretory phospholipase A2 from Arabidopsis thaliana: insights
into the three-dimensional structure and the amino acids involved
in catalysis. Biochemistry 45, 5687–5694.
Stahl, U., Lee, M., Sj o¨ dahl, S., Archer, D., Cellini, F., Ek, B., Ianna-
cone, R., MacKenzie, D., Semeraro, L., Tramontano, E., Stymne,
S., 1999. Plant low-molecular weight phospholipase A2s (PLA2s)
are structurally related to the animal secretory PLA2s and are
present as a family of isoforms in rice (Oryza sativa). Plant Mol.
Biol. 41, 481–490.
Tatulian, S.A., 2001. Toward understanding interfacial activation of
secretory phospholipase A2 (PLA2): membrane surface properties
and membrane-induced structural changes in the enzyme con-
tribute synergistically to PLA2 activation. Biophys. J. 80, 789–
800.
Markert, Y., Mansfeld, J., Schierhorn, A., R u¨ cknagel, K.P.,
Ulbrich-Hofmann, R., 2007. Production of synthetically created
phospholipase A2 variants with industrial impact. Biotechnol. Bio-
eng. 98, 48–59.
Noel, J.P., Bingman, C.A., Deng, T.L., Dupureur, C.M., Hamilton, K.J.,
Jiang, R.-T., Kwak, J.-G., Sekharudu, C., Sundaralingam, M., Tsai,
M.D., 1991. Phospholipase A2 engineering. X-ray structural and
functional evidence for the interaction of lysine-56 with substrates.
Biochemistry 30, 11801–11811.
Pande, A.H., Qin, S., Nemec, K.N., He, X., Tatulian, S.A., 2006.
Isoform-specific membrane insertion of secretory phospholipase
A2 and functional implications. Biochemistry 45, 12436–12447.
Pattus, E., Slotboom, A.J., de Haas, G.H., 1979. Regulation of phos-
pholipase A2 activity by the liquid–water interface: a monolayer
approach. Biochemistry 18, 2691–2697.
Pieterson, W.A., Vidal, J.C., Volwerk, J.J., de Haas, G.H., 1974.
Zymogen-catalyzed hydrolysis of monomeric substrates and the
presence of a recognition site for lipid–water interfaces in phos-
pholipase A2. Biochemistry 13, 1455–1460.
Upreti, G.C., Jain, M.K., 1978. Effect of the state of phosphatidyl-
choline on the rate of its hydrolysis by phospholipase A2 (bee
venom). Arch. Biochem. Biophys. 188, 364–375.
Van Eijk, J.H., Verheij, H.M., Dijkman, R., De Haas, G.H., 1983. Inter-
action of phospholipase A2 from Naja melanoleuca snake venom
with monomeric substrate analogs. Activation of the enzyme by
protein–protein or lipid–protein interactions. Eur. J. Biochem 132,
183–188.
Wells, M.A., 1974. The mechanism of interfacial activation of phos-
pholipase A2. Biochemistry 13, 2248–2257.
Wijewickrama, G.T., Kim, J.H., Kim, Y.J., Abraham, A., Oh, Y., Anan-
thanarayanan, B., Kwatia, M., Ackerman, S.J., Cho, W., 2006.
Systematic evaluation of transcellular activities of secretory phos-
pholipases A2. High activity of group V phospholipases A2 to
induce eicosanoid biosynthesis in neighboring inflammatory cells.
J. Biol. Chem. 281, 10935–10944.
Yu, B.-Z., Berg, O.G., Jain, M.K., 1993. The divalent cation is oblig-
atory for the binding of ligands to the catalytic site of secreted
phospholipase A2. Biochemistry 32, 6485–6492.