3
˚
b = 77.666(3), g = 87.0151, V = 2534.3(7) A , Z = 2, m =
ꢀ1
1
.560 mm , reflections collected/unique 13 573/9963, Rint = 0.0214,
= 0.0579, wR = 0.1248 for [I 4 2s(I)], R = 0.0786, wR
.1298 for all data. CCDC 783991.
R
0
1
2
1
2
=
1
(a) M. Yamanouchi, D. Chiba, F. Matsukura and H. Ohno,
Nature, 2004, 428, 539; (b) M. N. Leuenberger and D. Loss,
Nature, 2001, 410, 789; (c) P. C. E. Stamp and A. Gaita-Arino,
J. Mater. Chem., 2009, 19, 1718; (d) M. Manoli, A. Collins,
S. Parsons, A. Candini, M. Evangelisti and E. K. Brechin,
J. Am. Chem. Soc., 2008, 130, 11129.
2
(a) R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak,
Nature, 1993, 365, 141; (b) D. E. Freedman, D. M. Jenkins,
A. T. Iavarone and J. R. Long, J. Am. Chem. Soc., 2008, 130,
2884; (c) L. F. Jones, A. Prescimone, M. Evangelisti and
E. K. Brechin, Chem. Commun., 2009, 2023; (d) G. Karotsis,
S. J. Teat, W. Wernsdorfer, S. Piligkos, S. J. Dalgarno and
E. K. Brechin, Angew. Chem., Int. Ed., 2009, 48, 8285.
Fig. 4 Cole–Cole diagram at 5 K in a 2 kOe dc field for 1a. The solid
line represents the best fitting with a Debye model. Inset: relaxation-
time fitting to the Arrhenius law in the 10–1500 Hz interval for 1a.
In contrast to 1a, the w
M
T value of 1b gradually
ꢀ
1
decreases from 13.13 emu K mol at room temperature to
3 (a) M. Atanasov, P. Comba, S. Hausberg and B. Martin, Coord.
Chem. Rev., 2009, 253, 2306; (b) M. Sorai, M. Nakano and
Y. Miyazaki, Chem. Rev., 2006, 106, 976.
4 (a) N. Ishikawa, M. Sugita, T. Okubo, N. Tanaka, T. Iino and
Y. Kaizu, Inorg. Chem., 2003, 42, 2440; (b) N. Ishikawa, M. Sugita,
T. Ishikawa, S. Y. Koshihara and Y. Kaizu, J. Am. Chem. Soc.,
ꢀ1
7
.29 emu K mol at 1.8 K (Fig. 2). The Curie–Weiss law fit
ꢀ1
gave C = 13.47 emu K mol and Y = ꢀ7.92 K. Saturation
of magnetization does not reach for 1b above 65 kOe at 1.8 K.
0
00
m
The w and w signals of dynamic magnetic susceptibility of 1b
m
2
003, 125, 8694; (c) N. Ishikawa, M. Sugita and W. Wernsdorfer,
J. Am. Chem. Soc., 2005, 127, 3650; (d) M. A. AlDamen,
J. M. Clemente-Juan, E. Coronado, C. Martı-Gastaldo and
A. Gaita-Arino, J. Am. Chem. Soc., 2008, 130, 8874;
e) M. A. AlDamen, S. Cardona-Serra, J. M. Clemente-Juan,
E. Coronado, A. Gaita-Arino, C. Martı-Gastaldo, F. Luis and
are invariant upon changing the frequency at zero field
(
Fig. S11, ESIw). By applying a 2 kOe dc field, 1b shows
´
0
00
m
ˇ
frequency dependent w and w signals (Fig. 3c and d), but no
m
(
Cole–Cole plot can be obtained due to the poor discriminability
of the signals. These data indicate that 1b may also show single-
ion magnet behavior but at significantly lower temperature.
The distinct magnetic behavior of 1a and 1b can be attrib-
uted to the different local environments of the Dy(III) ion.
According to the single crystal X-ray diffraction study and
Continuous Shape Measure Analysis, the local ligand-field
symmetry of the Dy(III) ion is close to C2v in 1a and close to
D2d in 1b. The different local ligand-field symmetry of the
Dy(III) ion results in different anisotropy and then different
magnetic dynamic behaviors. Moreover, configuration inter-
actions between ground state and low lying excited states in
different symmetry may result in different spin ground states.
In conclusion, two polymorphic forms of Dy(III) complexes
were prepared. The two polymorphs show quite different
slow magnetic dynamic behaviors due to the different local
environments of the Dy(III) ion. The difference may arise from
the different crystal field effect and configuration interaction in
different symmetry. However, more efforts are needed to
understand the mechanism of polymorph formation and
the relation between the structure and magnetic dynamic
behaviors for rare earth complexes.
ˇ
´
O. Montero, Inorg. Chem., 2009, 48, 3467; (f) D. P. Li,
T. W. Wang, C. H. Li, D. S. Liu, Y. Z. Li and X. Z. You, Chem.
Commun., 2010, 46, 2929; (g) Y. Wang, X. L. Li, T. W. Wang,
Y. Song and X. Z. You, Inorg. Chem., 2010, 49, 969;
(
h) S.-D. Jiang, B.-W. Wang, G. Su, Z.-M. Wang and S. Gao,
Angew. Chem., Int. Ed., 2010, 49, 7448; (i) S.-D. Jiang,
B.-W. Wang, H.-L. Sun, Z.-M. Wang and S. Gao, J. Am. Chem.
Soc., 2011, 133, 4730–4733.
(a) J. D. Rinehart and J. R. Long, J. Am. Chem. Soc., 2009, 131,
12558; (b) J. D. Rinehart, K. R. Meihaus and J. R. Long, J. Am.
Chem. Soc., 2010, 132, 7572.
D. E. Freedman, W. H. Harman, T. D. Harris, G. J. Long,
C. J. Chang and J. R. Long, J. Am. Chem. Soc., 2010, 132, 1224.
(a) N. Ishikawa, J. Phys. Chem. A, 2003, 107, 5831;
(b) N. Ishikawa, M. Sugita, T. Ishikawa, S. Y. Koshihara and
Y. Kaizu, J. Phys. Chem. B, 2004, 108, 11265; (c) N. Ishikawa,
M. Sugita and W. Wernsdorfer, Angew. Chem., Int. Ed., 2005, 44,
5
6
7
2
931; (d) W. H. Harman, T. D. Harris, D. E. Freedman, H. Fong,
A. Chang, J. D. Rinehart, A. Ozarowski, M. T. Sougrati,
F. Grandjean, G. J. Long, J. R. Long and C. J. Chang, J. Am.
Chem. Soc., 2010, 132, 18115.
S. Takamatsu, T. Ishikawa, S. Koshihara and N. Ishikawa, Inorg.
Chem., 2007, 46, 7250.
F. Branzoli, P. Carretta, M. Filibian, G. Zoppellaro, M. J. Graf,
J. R. Galan-Mascaros, O. Fuhr, S. Brink and M. Ruben, J. Am.
Chem. Soc., 2009, 131, 4387.
0 L. Melby, N. Rose, E. Abramson and J. C. Caris, J. Am. Chem.
Soc., 1964, 86, 5117.
8
9
1
This work was supported by National Natural Science
Foundation of China (91022031, 21021062), and the National
Basic Research Program of China (2007CB925100,
11 G. F. Xu, Q. L. Wang, P. Gamez, Y. Ma, R. Cle
S. P. Yan, P. Cheng and D. Z. Liao, Chem. Commun., 2010, 46,
506.
2 (a) R. L. Carlin, Magnetochemistry, Springer, Berlin, 1986;
b) K. Bernot, J. Luzon, L. Bogani, M. Etienne, C. Sangregorio,
´
rac, J. k. Tang,
1
2
011CB808704 and 2011CB933300). We thank Prof.
1
Dong-Shan Zhou and Dr Xin-Yi Wang for their kind help
and suggestions.
(
M. Shanmugam, A. Caneschi, R. Sessoli and D. Gatteschi, J. Am.
Chem. Soc., 2009, 131, 5573.
1
3 L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli and
B. Barbara, Nature, 1996, 383, 145.
Notes and references
y Crystal data for 1a (C56
monoclinic, space group C2/c, a = 35.754(5), b = 10.8207(15),
H
40
F
9
N
2
O
6
Dy): M = 1170.40 g mol,
14 (a) C. J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach,
S. Parsons, S. P. Perlepes, G. Christou and E. K. Brechin,
J. Am. Chem. Soc., 2007, 129, 2754; (b) D. Yoshihara,
S. Karasawa and N. Koga, J. Am. Chem. Soc., 2008, 130, 10460.
15 (a) G. Poneti, K. Bernot, L. Bogani, A. Caneschi, R. Sessoli,
W. Wernsdorfer and D. Gatteschi, Chem. Commun., 2007, 1807;
(b) S. Kanegawa, S. Karasawa, M. Maeyama, M. Nakano and
N. Koga, J. Am. Chem. Soc., 2008, 130, 3079.
3
˚
˚
c = 27.295(4) A, b = 105.515(3)1, V = 10175(2) A , Z = 8, m =
ꢀ1
1
.554 mm , reflections collected/unique 26 280/9963, Rint = 0.0316,
= 0.0511, wR = 0.1186 for [I 4 2s(I)], R = 0.0706, wR
.1269 for all data. CCDC 783990. Crystal data for 1b
R
0
1
2
1
2
=
ꢀ
(C H F N O Dy): M = 1170.40 g mol, triclinic, space group P1,
56 40 9 2 6
˚
a = 9.7289(16), b = 13.557(3), c = 20.495(3) A, a = 73.683,
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6867–6869 6869