P. Gupta et al. / Tetrahedron Letters 46 (2005) 6571–6573
6573
generation catalyst13 (10 mol %) in the presence of Ti(i-
PrO)4 (0.03 equiv) in refluxing CH2Cl2 for 8 h afforded
the a,b-unsaturated d-lactone 1214 in 87% yield. Desilyl-
ation of 12 with TBAF gave the hydroxy lactone 13 in
86% yield. Treatment of 13 with TBS protected dihydro-
caffeic acid 14 using DCC and a catalytic amount of
DMAP furnished compound 15 in 85% yield, which
was deprotected with TBAF to give tarchonanthuslac-
tone 1 in 84% yield. The physical and spectroscopic data
of 1 were in full agreement with literature data.5
Trans. 1 1990, 1809–1812; (g) Nakata, T.; Hata, N.; Iida,
K.; Oishi, T. Tetrahedron Lett. 1987, 28, 5661–5664.
6. Echeverri, F.; Arango, V.; Quinones, W.; Torres, F.;
Escobar, G.; Rosero, Y.; Archbold, R. Phytochemistry
2001, 56, 881–885.
7. Bohlmann, F.; Suwita, A. Phytochemistry 1979, 18, 677–
679.
8. Hsu, F. L.; Chen, Y. C.; Cheng, J. T. Planta Med. 2000,
66, 228–230.
9. (a) Pais, G. C. G.; Fernandes, R. A.; Kumar, P.
Tetrahedron 1999, 55, 13445–13450; (b) Fernandes, R.
A.; Kumar, P. Tetrahedron: Asymmetry 1999, 10, 4349–
4356; (c) Fernandes, R. A.; Kumar, P. Eur. J. Org. Chem.
2002, 2921–2923; (d) Kandula, S. V.; Kumar, P. Tetra-
hedron Lett. 2003, 44, 6149–6151; (e) Gupta, P.; Naidu, S.
V.; Kumar, P. Tetrahedron Lett. 2004, 45, 849–851; (f)
Naidu, S. V.; Gupta, P.; Kumar, P. Tetrahedron Lett.
2005, 46, 2129–2131; (g) Kumar, P.; Naidu, S. V.; Gupta,
P. J. Org. Chem. 2005, 70, 2843–2846; (h) Kumar, P.;
Naidu, S. V. J. Org. Chem. 2005, 70, 4207–4210.
10. (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen,
E. N. Science 1997, 277, 936–938; (b) Schaus, S. E.;
Branalt, J.; Jacobson, E. N. J. Org. Chem. 1998, 63, 4876–
4877; (c) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv.
Synth. Catal. 2001, 343, 5–26; (d) Schaus, S. E.; Brandes,
B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.;
Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am.
Chem. Soc. 2002, 124, 1307–1315.
In conclusion, a practical and enantioselective synthesis
of tarchonanthuslactone has been achieved using itera-
tive hydrolytic kinetic resolution (HKR) to generate
both the stereocenters and ruthenium catalyzed
ring closing metathesis (RCM) to construct the d-lac-
tone moiety. The synthetic strategy described here has
significant potential to synthesize a variety of other bio-
logically important substituted 1,3-polyol-5,6-dihydro-
pyran-2-one-containing natural products. Currently
studies are in progress in this direction.
Acknowledgements
P.G. and S.V.N. thank UGC and CSIR, New Delhi, for
financial assistance, respectively. We are grateful to Dr.
M. K. Gurjar for his support and encouragement.
Financial support from DST, New Delhi (Grant No.
SR/S1/OC-40/2003) is gratefully acknowledged. This is
NCL communication No. 6682.
25
11. Spectral data of compound 9a: ½aꢀD ꢁ11.4 (c 0.67,
CHCl3); IR (Chloroform): mmax 3018, 2958, 2930, 1858,
1645, 1472, 1463, 1377, 1256, 1216, 1101, 1005, 938, 878,
1
760 cmꢁ1; H NMR (CDCl3, 200 MHz): d 4.01–4.08 (m,
1H), 3.02–3.04 (m, 1H), 2.76–2.80 (m, 1H), 2.46–2.50 (m,
1H), 1.67–1.71 (m, 1H), 1.50–1.52 (m, 1H), 1.19 (d,
J = 6.3 Hz, 3H), 0.87 (s, 9H), 0.03 (s, 3H), 0.02 (s, 3H);
13C NMR (CDCl3, 125 MHz): d 66.3, 48.8, 45.8, 42.1,
25.4, 23.3, 17.6, ꢁ5.0, ꢁ5.3. Anal. Calcd for C11H24O2Si
(216.39): C, 61.05; H, 11.18; Si, 12.98. Found: C, 61.12; H,
11.08; Si, 12.96.
References and notes
1. Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021–2040.
2. (a) Hunter, T. J.; OÕDoherty, G. A. Org. Lett. 2001, 3,
2777–2780; (b) Jorgensen, K. B.; Suenaga, T.; Nakata, T.
Tetrahedron Lett. 1999, 40, 8855–8858; (c) Ghosh, A. K.;
Bilcer, G. Tetrahedron Lett. 2000, 41, 1003–1006; (d)
Reddy, M. V. R.; Rearick, J. P.; Hoch, N.; Ramachan-
dran, P. V. Org. Lett. 2001, 3, 19–20; (e) Smith, A. B.;
Brandt, B. M. Org. Lett. 2001, 3, 1685–1688.
12. (a) Nicolaou, K. C.; Webber, S. E. Synthesis 1986, 453–
461; (b) Takao, K.; Ochiai, H.; Yoshida, K.; Hashizuka,
T.; Koshimura, H.; Tadano, K.; Ogawa, S. J. Org. Chem.
1995, 60, 8179–8193.
13. For reviews on ring-closing metathesis, see: (a) Grubbs, R.
H.; Chang, S. Tetrahedron 1998, 54, 4413–4450; (b)
Prunet, J. Angew. Chem., Int. Ed. 2003, 42, 2826–2830.
25
14. Spectral data of compound 12: ½aꢀD ꢁ92.6 (c 0.84,
3. Jodynis-Liebert, J.; Murias, M.; Bloszyk, E. Planta Med.
2000, 66, 199–205.
CHCl3); IR (Chloroform): mmax 3019–2857, 1718, 1472,
1445, 1424, 1380, 1255, 1216 cmꢁ1 1H NMR (CDCl3,
;
4. Drewes, S. E.; Schlapelo, B. M.; Horn, M. M.; Scott-
Shaw, R.; Sandor, O. Phytochemistry 1995, 38, 1427–1430.
5. (a) Enders, D.; Steinbusch, D. Eur. J. Org. Chem. 2003,
4450–4454; (b) Garaas, S. D.; Hunter, T. J.; OÕDoherty,
G. A. J. Org. Chem. 2002, 67, 2682–2685; (c) Reddy, M.
V. R.; Yucel, A. J.; Ramachandran, P. V. J. Org. Chem.
2001, 66, 2512–2514; (d) Solladie, G.; Gressot-Kempf, L.
Tetrahedron: Asymmetry 1996, 7, 2371–2379; (e) Mori, Y.;
Kageyama, H.; Suzuki, M. Chem. Pharm. Bull. 1990, 38,
2574–2576; (f) Mori, Y.; Suzuki, M. J. Chem. Soc., Perkin
300 MHz): d 6.90 (ddd, J = 10, 4.2, 3.9 Hz, 1H), 6.04 (ddd,
J = 10, 2.2, 2.2, 1H), 4.61 (dddd, J = 8, 8, 8, 5.1 Hz, 1H),
4.16–4.21 (m, 1H), 2.31–2.35 (m, 2H), 1.86 (ddd, J = 14.3,
8.1, 8.1 Hz, 1H), 1.62 (ddd, J = 14.8, 5.4, 4.2 Hz, 1H), 1.18
(d, J = 6 Hz, 3H), 0.88 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H);
13C NMR (CDCl3, 125 MHz): d 164.2, 144.9, 121.1, 75.2,
64.6, 43.9, 29.4, 25.5, 23.1, 17.7, ꢁ4.5, ꢁ5.1. Anal. Calcd
for C14H26O3Si (270.43): C, 62.18; H, 9.69; Si 10.39.
Found: C, 62.09; H, 9.74; Si, 10.36.