Journal of the American Chemical Society
Page 4 of 20
(
1) For selected reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem.
Scheme 3. Iterative synthesis of anthracene and tetracene
Res. 2001, 34, 535. (b) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009,
38, 3102. (c) López, F.; Mascareñas, J. L. Chem. Eur. J. 2011, 17, 418. (d)
Zhao, Q. Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
e) Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588. (f) Wang, Z.;
Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
(2) Selected examples: (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60,
2906. (b) Du, Y.; Lu, X.; Yu, Y. J. Org. Chem. 2002, 67, 8901. (c) Lu, X.;
Lu, Z.; Zhang, X. Tetrahedron 2006, 62, 457. (d) Henry, C. E.; Kwon, O.
Org. Lett. 2007, 9, 3069. (e) Lu, Z.; Zheng, S.; Zhang, X.; Lu, X. Org.
Lett. 2008, 10, 3267. (f) Guan, X.ꢀY.; Wei, Y.; Shi, M. Org. Lett. 2010,
12, 5024. (g) Hua, X.; Chai, Z.; Zheng, C. W.; Yang, Y. Q.; Liu, W.;
Zhang, J. K.; Zhao, G. Angew. Chem. Int. Ed. 2010, 49, 4467. (h) Han, X.;
Wang, Y.; Zhong, F.; Lu, Y. J. Am. Chem. Soc. 2011, 133, 1726. (i) Han,
X.; Wang, S.ꢀX.; Zhong, F.; Lu, Y. Synthesis 2011, 1859. (j) Zhao, Q.;
Han, X.; Wei, Y.; Shi, M.; Lu, Y. Chem. Commun. 2012, 48, 970.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
•
2
CO Et
CHO
CHO
•
CO
2
Et
CHO
CHO
NaOAc, HOAc
PPh
2%
1. LAH
OAc 2.Swern ox.
3
(
84%
9
4
g
8
CO Et
2
CO
2
Et
CHO
CHO
NaOAc, HOAc
PPh
85%
1. LAH
.Swern ox.
8%
OAc
2
3
6
9
10
•
2
CO Et
CO
2
Et
NaOAc, HOAc
PPh
72%
OAc
3
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
11
(
3) Selected examples: (a) Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38,
3
461. (b) Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031. (c) Mercier, E.;
Fonovic, B.; Henry, C. E.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007,
48, 3617. (d) Fang, Y. Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130,
5
660. (e) Gaun, X. Y.; Wei, Y.; Shi, M. J. Org. Chem. 2009, 74, 6343. (f)
Meng, X. T.; Huang, Y.; Chen, R. Y. Org. Lett. 2009, 11, 137. (g) Sun, Y.
W.; Guan, X. Y.; Shi, M. Org. Lett. 2010, 12, 5664. (h) Chen, X. Y.; Lin,
R. C.; Ye, S. Chem. Commun. 2012, 48, 1317. (i) Han, X.; Zhong, F.;
Wang, Y.; Lu, Y. Angew. Chem. Int. Ed. 2012, 51, 767. (j) Henry, C. E.;
Xu, Q.; Fan, Y. C.; Martin, T. J.; Belding, L.; Dudding, T.; Kwon, O. J.
Am. Chem. Soc. 2014, 136, 11890.
(
4) (a) Zhu, X. F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org.
Lett. 2005, 7, 1387. (b) Dudding, T.; Kwon, O.; Mercier, E. Org. Lett.
2006, 8, 3643. (c) Zhu, X.ꢀF.; Schaffner, A.ꢀP.; Li, R. C.; Kwon, O. Org.
Lett. 2005, 7, 2977. (d) Creech, G. S.; Kwon, O. Org. Lett. 2008, 10, 429.
e) Creech, G. S.; Zhu, X. F.; Fonovic, B.; Dudding, T.; Kwon, O.
Tetrahedron 2008, 64, 6935. (f) Sun, Y. W.; Guan, X. Y.; Shi, M. Org.
Lett. 2010, 12, 5664.
(5) (a) He, Z. R.; Tang, V.; He, Z. J. Phosphorous Sulfur Silicon Relat.
Elem. 2008, 183, 1518. (b) Xu, S. L.; Zhou, L. L.; Zeng, S.; Ma, R. Q.;
Wang, Z. H.; He, Z. J. Org. Lett. 2009, 11, 3498. (c) Xu, S. L.; Zou, W.;
Wu, G. P.; Song, H. B.; He, Z. J. Org. Lett. 2010, 12, 3556. (d) Khong, S.
N.; Tran, Y. S.; Kwon, O. Tetrahedron 2010, 66, 4760. (e) Xu, S. L.;
Chen, R. S.; He, Z. J. J. Org. Chem. 2011, 76, 7528. (f) Jacobsen, M. J.;
Funder, E. D.; Cramer, J. R.; Gothelf, K. V. Org. Lett. 2011, 13, 3418. (g)
Qin, Z.; Ma, R.; Xu, S.; He, Z. J. Tetrahedron 2013, 69, 10424. For
exceptions, see: ref. (d); ref. (g); (h) Ma, R. Q.; Xu, S. L.; Tang, X. F.;
Wu, G. P.; He, Z. J. Tetrahedron 2011, 67, 1053.
Figure 2. Excitation (solid lines) and emission (dashed lines)
spectra of 4g (blue lines), 9 (green lines), and 11 (red lines).
(
We obtained fluorescence excitation and emission spectra for
compounds 4g, 9, and 11 (Figure 2). Stronger transitions appeared
in the range 250–300 nm, with weaker transitions in the range
3
00–500 nm. A bathochromic shift occurred upon proceeding
from 4g (326 nm) to 9 (358 nm) to 11 (450 nm). A bathochromic
shift also occurred in the fluorescence emissions from 4g to 9 to
1
1, with 0–0 transitions at 342, 406, and 495 nm, respectively.
The quantum yields for the substituted polyacenes 4g, 9, and 11
were 0.18, 0.65, and 0.15, respectively. These observations match
16
well with reported photophysical data of 2ꢀcarbonylpolyacenes.
In conclusion, we have developed a phosphineꢀmediated
multicomponent reaction between allenes, oꢀphthalaldehydes, and
(
6) Virieux, D.; Guillouzic, A. F.; Cristau, H. J. Tetrahedron 2006, 62,
710.
(7) (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons; WileyꢀVCH:
3
nucleophiles that provides non–C ꢀsymmetric naphthalene,
2
anthracene, and tetracene derivatives. A mechanistic investigation
involving the synthesis of putative intermediates and reaction
monitoring through HRMS revealed that this conversion occurs
New York, 1996. (b) Waston, M. D.; Fethtenkötter, A.; Müllen, K. Chem.
Rev. 2001, 101, 1267. (c) De Koning, C. B.; Rousseau, A. L.; van Otterlo,
W. A. L. Tetrahedron 2003, 59, 7.
(8) Selected examples: (a) Feng, C.; Loh, T. P. J. Am. Chem. Soc. 2010,
through
a
γꢀumpolung/aldol/Wittig/dehydration cascade.
A
1
32, 17710. (b) Fukutani, T.; Hirato, K.; Satoh, T.; Miura, M. J. Org.
combination of phthalaldehydes and 1,3ꢀdisubstituted allenes also
produces naphthalenes through an aldol/Wittig/dehydration
sequence. This arene homologation can also be applied iteratively
to prepare higherꢀorder acenes.
Chem. 2011, 76, 2867. (c) Kocsis, L. S.; Benedetti, E.; Brummond, K. M.
Org. Lett. 2012, 14, 4430. (d) Kang, D. L.; Kim, J.; Oh, S.; Lee, P. H.
Org. Lett. 2012, 14, 5636. (e) Geary, L. M.; Chen, T. Y.; Montgomery, T.
P.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 5920. (f) Pham, M. V.;
Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3484.
(9) See the Supporting Information for more details.
ASSOCIATED CONTENT
(10) Trost, B. M.; Li, C. J. J. Am. Chem. Soc. 1994, 116, 3167.
9
Supporting Information.
Experimental procedures and analytical data (PDF). This material
is available free of charge via the Internet at http://pubs.acs.org.
(11) The structure of 4n´ was established using Xꢀray crystallography.
1
(12) The structures of 4o and 4o´ were identified using H NMR
spectroscopy. See the detailed information in the Supporting Information.
(13) Selected examples: (a) Cristau, H.ꢀJ.; Viala, J.; Christol, H.
Tetrahedron Lett. 1982, 23, 1569. (b) Lu, X.; Zhang, C. Synlett 1995, 645.
AUTHOR INFORMATION
(
c) Chen, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Org.
Chem. 1998, 63, 5631. (d) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc.
2009, 131, 14231. (e) Chung, Y. K.; Fu, G. C. Angew. Chem. Int. Ed.
2009, 48, 2225. (f) Lundgren, R. J.; Wilsily, A.; Marion, N.; Ma, C.;
Chung, Y. K.; Fu, G. C. Angew. Chem. Int. Ed. 2013, 52, 2525.
Corresponding Author
(
14)
Evans
D.
A.
Evans
pK
a
Table.
ACKNOWLEDGMENT
(15) (a) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004,
04, 4891. (b) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (c) Burdett, J.
The NIH (GM071779) is acknowledged for financial support.
1
J.; Bardeen, C. J. Acc. Chem. Res. 2013, 46, 1312.
16) Nehira, T.; Parish, C. A.; Jockusch, S.; Turro, N. J.; Nakanishi, K.;
Berova, N. J. Am. Chem. Soc. 1999, 121, 8681.
REFERENCES
(
4
ACS Paragon Plus Environment