Organic Letters
Letter
Scheme 5. Proposed Possible Mechanism with Computed
Relative Free Energies (kcal·mol−1) by the B3LYP-D3
Method in Solution
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for Prof. Warmuth’s constructive discussion
about hydrogen bonding, Mr. Yang Gao’s technical support,
and Dr. Tian Zhou’s computational support for modeling study
(all at Rutgers University). We gratefully acknowledge the
financial support from the NSFC and SUSTech.
REFERENCES
■
(1) (a) Akiyama, T. Chem. Rev. 2007, 107, 5744−5758. (b) Akiyama,
T.; Mori, K. Chem. Rev. 2015, 115, 9277−9306.
(2) (a) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev.
2014, 114, 9047−9153. (b) Rueping, M.; Nachtsheim, B. J.;
Ieawsuwan, W.; Atodiresei, I. Angew. Chem., Int. Ed. 2011, 50,
6706−6720. (c) James, T.; van Gemmeren, M.; List, B. Chem. Rev.
2015, 115, 9388−9409.
(3) (a) Pihko, P. M. Hydrogen Bonding in Organic Synthesis; Wiley,
2009. (b) Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062−2064.
(c) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45,
1520−1543. (d) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107,
5713−5743. (e) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem.
2012, 4, 603−614. (f) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013,
52, 518−533.
(4) (a) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187−
1198. (b) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593−601.
(c) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534−561.
(5) (a) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem. - Eur. J.
2010, 16, 9350−9365. (b) Allen, A. E.; MacMillan, D. W. C. Chem. Sci.
2012, 3, 633−658. (c) Meeuwissen, J.; Reek, J. N. H. Nat. Chem. 2010,
2, 615−621. (d) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337−
1378. (e) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745−2755.
(6) Wieland, J.; Breit, B. Nat. Chem. 2010, 2, 832−837.
(7) Zhao, Q.; Li, S.; Huang, K.; Wang, R.; Zhang, X. Org. Lett. 2013,
15, 4014−4017.
(8) Li, P.; Zhou, M.; Zhao, Q.; Wu, W.; Hu, X.; Dong, X.-Q.; Zhang,
X. Org. Lett. 2016, 18, 40−43.
(9) Zhao, Q.; Wen, J.; Tan, R.; Huang, K.; Metola, P.; Wang, R.;
Anslyn, E. V.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 8467−8470.
(10) Wen, J.; Jiang, J.; Zhang, X. Org. Lett. 2016, 18, 4451−4453.
(11) Wen, J.; Tan, R.; Liu, S.; Zhao, Q.; Zhang, X. Chem. Sci. 2016, 7,
3047−3051.
(12) (a) Fattorusso, E.; Taglialatela-Scafati, O. Modern Alkaloids:
Structure, Isolation, Synthesis, and Biology; Wiley, 2008. (b) Kochanow-
ska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489−
4497. (c) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep.
2013, 30, 694−752.
molecule, the chloride ion facilitates heterolytic cleavage of
dihydrogen to regenerate the active dihydride species and HCl,
which was computed to be the rate-determining step. Our
computational results are qualitatively consistent with the
experimental observations and support the cooperative effect of
Rh, Brønsted acid, and anion binding in the asymmetric
hydrogenation. However, other possible models, such as the
one involving the electrostatic interaction between an anionic
Rh complex and the cationic indolinium substrate,24b,25 could
not be excluded.
In summary, we developed an efficient catalytic system that
works well under acidic conditions. This method was
successfully applied to synthesize chiral indolines. Catalyzed
by a Rh/ZhaoPhos complex, various 2-substituted and 2,3-
disubstituted indoles were hydrogenated with high enantiose-
lectivities. By employing a Brønsted acid HCl, an indolinium
ion active intermediate is formed and reduced afterward.
Thiourea−chloride anion binding proved to be crucial for high
enantioselectivity and reactivity. DFT calculation studies
suggested an outer-sphere mechanism in the hydrogenation
step.
ASSOCIATED CONTENT
* Supporting Information
■
(13) (a) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357−1366.
(b) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev.
2012, 112, 2557−2590. (c) Chen, Z.; Zhou, Y. Synthesis 2016, 48,
1769−1781. For reviews on activation of heteroaromatic substrates,
S
The Supporting Information is available free of charge on the
see (d) Balakrishna, B.; Nunez-Rico, J. L.; Vidal-Ferran, A. Eur. J. Org.
́
̃
Chem. 2015, 2015, 5293−5303.
Experimental and computational details, characterization
data, and NMR spectra (PDF)
(14) (a) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.;
Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909−8911. (b) Duan, Y.; Li,
D
Org. Lett. XXXX, XXX, XXX−XXX