Organic Letters
Letter
complex catalyzed three-component imination−alkynylation−
aza-Michael sequence.
research fellowship. B.G.D. thanks DST for the INSPIRE
Faculty award (DST/INSPIRE/04/2016/000702). We also
thank Dr. Monoj Gangwar from IIT Kanpur for solving the
crystal structure.
To demonstrate the synthetic utility of the protocol,
isoindoline 5b was transformed into the corresponding alcohol
8b with a 68% yield and 96% ee by LiAlH4 reduction. Alkyne
functionality was easily hydrogenated by molecular hydrogen
in the presence of 10% Pd/C to furnish 8a in 92% yield and
94% ee (Scheme 6).
REFERENCES
■
(1) Muller, T. J. J. In Synthesis of Heterocycles via Multicomponent
Reactions I; Orru, R. V. A., Ruijter, E., Eds.; Springer: Berlin, 2010; pp
25−95.
Scheme 6. Useful Transformations of the Product
(2) (a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669−
1730. (b) Yet, L. Privileged Structures in Drug Discovery; John Wiley &
Sons: Inc.: Hoboken, NJ, 2018; pp 356−413. (c) Speck, K.; Magauer,
T. Beilstein J. Org. Chem. 2013, 9, 2048−2078.
(3) (a) Hussein, Z.; Mulford, D. J.; Bopp, B. A.; Granneman, G. R.
Br. J. Clin. Pharmacol. 1993, 36, 357−361. (b) Kondo, T.; Yoshida,
K.; Tanayama, S. Arzneimittelforschung 1996, 46, 839−843.
(4) (a) Balandaram, G.; Kramer, L. R.; Kang, B.-H.; Murray, I. A.;
Perdew, G. H.; Gonzalez, F. J.; Peters, J. M. Toxicology 2016, 363, 1−
9. (b) Gim, H. J.; Choi, Y.-S.; Li, H.; Kim, Y.-J.; Ryu, J.-H.; Jeon, R.
Int. J. Mol. Sci. 2018, 19 (1−18), 3032.
(5) (a) Jaton, A. L.; Giger, R. K.; Vigouret, J. M.; Enz, A.; Frick, W.;
Closse, A.; Markstein, R. Life Sci. 1986, 38, 155−163. (b) Goldstein,
M.; Kuga, S.; Kusano, N.; Meller, E.; Dancis, J.; Schwarcz, R. Brain
Res. 1986, 367, 114−120.
(6) Kukkola, P. J.; Bilci, N. A.; Ikler, T.; Savage, P.; Shetty, S. S.;
DelGrande, D.; Jeng, A. Y. Bioorg. Med. Chem. Lett. 2001, 11, 1737−
1740.
(7) (a) Kase, H.; Fujita, H.; Nakamura, J.; Hashizume, K.; Goto, J.;
Kubo, K.; Shuto, K. J. Antibiot. 1986, 39, 354−363. (b) Liao, X. W.;
Dong, W. F.; Liu, W.; Guan, B. H.; Liu, Z. Z. J. Heterocycl. Chem.
2009, 47, 50−53.
(8) (a) Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P.
Nat. Rev. Drug Discovery 2009, 8, 69−85. (b) Ishiguro, K.; Sakiyama,
S.; Takahashi, K.; Arai, T. Biochemistry 1978, 17, 2545−2550.
(9) (a) Liu, Y.-Q.; Yang, L.; Tian, X. Curr. Bioact. Compd. 2007, 3,
37−66. (b) IIda, A.; Kano, M.; Kubota, Y.; Koga, K.; Tomioka, K.
Chem. Pharm. Bull. 2000, 48, 486−489.
(10) (a) Tomita, F.; Takahashi, K.; Shimizu, K. J. Antibiot. 1983, 36,
463−467. (b) Hill, G. C.; Wunz, T. P.; Remers, W. A. J. Comput.-
Aided Mol. Des. 1988, 2, 91−106.
(11) Reviews: (a) Starosotnikov, A. M.; Bastrakov, M. A. Chem.
Heterocycl. Compd. 2017, 53, 1181−1183. (b) Albano, G.; Aronica, L.
A. Eur. J. Org. Chem. 2017, 2017, 7204−7221. (c) Albano, G.;
Aronica, L. A. Synthesis 2018, 50, 1209−1227 and references therein .
(12) (a) Li, T.; Zhou, C.; Yan, X.; Wang, J. Angew. Chem., Int. Ed.
2018, 57, 4048−4052. (b) Kang, Z.; Zhang, D.; Shou, J.; Hu, W. Org.
Lett. 2018, 20, 983−986. (c) Unhale, R. A.; Sadhu, M. M.; Ray, S. K.;
Biswas, R. G.; Singh, V. K. Chem. Commun. 2018, 54, 3516−3519.
(d) Barrio, P.; Ibanez, I.; Herrera, L.; Roman, R.; Catalan, S.; Fustero.
Chem. - Eur. J. 2015, 21, 11579−11584. (e) Lebrun, S.; Sallio, R.;
Dubois, M. S.; Agbossou-Niedercorn, F.; Deniau, E.; Michon, C. Eur.
J. Org. Chem. 2015, 2015, 1995−2004. (f) Yang, G.; Shen, C.; Zhang,
W. Angew. Chem., Int. Ed. 2012, 51, 9141−9145. (g) Bisai, V.; Suneja,
A.; Singh, V. K. Angew. Chem., Int. Ed. 2014, 53, 10737−10741 and
references therein .
(13) (a) Pandey, G.; Varkhedkar, R.; Tiwari, D. Org. Biomol. Chem.
2015, 13, 4438−4448. (b) Fustero, S.; Moscardo, J.; Sanchez-Rosello,
M.; Rodriguez, E.; Barrio, P. Org. Lett. 2010, 12, 5494−5497.
(c) Fustero, S.; Herrera, L.; Lazaro, R.; Rodriguez, E.; Maestro, M. A.;
Mateu, N.; Barrio, P. Chem. - Eur. J. 2013, 19, 11776−11785.
(d) Achary, R.; Jung, I.-A.; Lee, H.-K. J. Org. Chem. 2018, 83, 3864−
3878. (e) Son, S.-M.; Seo, Y. J.; Lee, H.-K. Chem. Commun. 2016, 52,
4286−4289. (f) Tao, Y.; Gilbertson, S. R. Chem. Commun. 2018, 54,
11292−11295.
In conclusion, we developed a multicomponent reaction
sequence for the synthesis of 1,3-disubstituted isoindolines and
tetrahydroisoquinolines with an unprecedented level of yield as
well as enantio- and diastereoselectivity. Three elementary
steps, imination−alkylation−aza-Michael, occur in one pot to
furnish the product. Substituted aldehydes were synthesized in
one step from the commercially available starting material. The
reaction was scaled up to demonstrate the practical usefulness.
Transformation of the ester and alkyne functionalities shows
the synthetic potential of the methodology. This succinct and
flexible methodology offers ample opportunity of its
application in complex natural product synthesis, which we
are currently working on.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, and characterization data and
spectra of new compounds (PDF)
Accession Codes
CCDC 1893283 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
†B.G.D. and S.S. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(14) Enders, D.; Narine, A. A.; Toulgoat, F.; Bisschops, T. Angew.
Chem., Int. Ed. 2008, 47, 5661−5665.
(15) (a) Takizawa, S.; Inoue, N.; Hirata, S.; Sasai, H. Angew. Chem.,
Int. Ed. 2010, 49, 9725−9729. (b) Takizawa, S.; Sako, M.; Abozeid,
V.K.S. acknowledges DST/SERB, India for a J. C. Bose
fellowship (SR/S2/JCB-17/2008) and SERB (CRG/2018/
000552) for the financial support. S.S. thanks IIT Kanpur for a
D
Org. Lett. XXXX, XXX, XXX−XXX