Paper
Catalysis Science & Technology
reduced in vacuo and the product purified by column
chromatography on silica gel, eluting with petroleum ether
Characterisation details are included in the main body of the
text (Table 4 gives further details). The interaction of AgOTf
with 1-hexene was examined on the same scale as above,
(
(
40–60 °C), to give the title compound as a colourless oil
0.249 g, 1.11 mmol, 44%). H NMR (400 MHz, CDCl3)
1
III
without the Au complex. See ESI† for NMR spectral data.
δ 7.44–7.40 (m, 2H), 7.32–7.23 (m, 3H), 6.05 (ddt, J = 12.4, 9.3
and 7.5 Hz, 1H), 5.12 (m, 1H), 5.09 (m, 1H), 2.26 (dt, J = 7.2
1
3
Acknowledgements
and 1.3 Hz, 2H), 1.87–1.58 (m, 7H), 1.28–1.12 (m, 3H).
C
NMR (100 MHz, CDCl ) δ 135.0, 131.6, 128.1, 127.4, 124.2,
3
We acknowledge GlaxoSmithKline, EPSRC and the Royal
Society for funding. Dr J. M. Slattery is thanked for a sample
1
3
17.1, 95.1, 83.3, 47.4, 37.6, 37.0, 26.1, 23.1. ESI+-MS m/z
+
01.1 (100%, [M + Ph] ), 279.2 (11%), 245.1 (61%), 225.2
of Ag[Al(OC(CF ) ) ] and discussions concerning this salt.
+
3 3 4
(
(
68%, [MH] ), 195.1 (20%), 167.1 (11%), 149.0 (23%), 126.0
30%). ESI+-HRMS calcd. for C17
25.1633.
This paper builds on work funded by a previous EPSRC grant
+
H
21 ([MH] ) 225.1638; found
(
EP/D078776/1).
2
t
(
4,4-Dimethylcyclohexa-1,5-dien-1-yl)benzene (15). [AuBr(I Pe)]
(
7
(
3.6 mg, 7.4 μmol, 0.02 equiv.), Ag[Al(OC(CF
.4 μmol, 0.02 equiv.) and [(1-allylcyclohexyl)ethynyl]benzene
14) (78.3 mg, 0.350 mmol, 1 equiv.) were dissolved in
3 3 4
) ) ] (76) (8.0 mg,
Notes and references
1 (a) A. Arcadi, Chem. Rev., 2008, 108, 3266–3325; (b) Z. Li,
C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239–3265; (c)
Zigang Li, C. Brouwer and C. He, Chem. Rev., 2008, 108,
3351–3378; (d) E. Jiménez-Núñez and A. M. Echavarren,
Chem. Commun., 2007, 333–346.
dichloromethane (2 mL) and stirred (0 °C – r.t., 15 h). The
reaction mixture was reduced in vacuo and purified by
column chromatography on silica gel, eluting with petroleum
ether (40–60 °C), to give the title compound as a colourless
oil (64.8 mg, 0.289 mmol, 83%; 93% conversion noted
2 (a) Y. Harrak, C. Blaszykowski, M. Bernard, K. Cariou,
E. Mainetti, V. Mouriès, A. Dhimane, L. Fensterbank and
M. Malacria, J. Am. Chem. Soc., 2004, 126, 8656–8657; (b)
M. R. Luzung, J. P. Markham and F. D. Toste, J. Am. Chem.
Soc., 2004, 126, 10858–10859; (c) Y. Horino, T. Yamamoto,
K. Ueda, S. Kuroda and F. D. Toste, J. Am. Chem. Soc.,
2009, 131, 2809–2811; (d) P. Y. Toullec and V. Michelet, Top.
Curr. Chem., 2011, 302, 31–80.
3 (a) J. Sun, M. P. Conley, L. Zhang and S. A. Kozmin, J. Am.
Chem. Soc., 2006, 128, 9705–9710; (b) L. Zhang and
S. A. Kozmin, J. Am. Chem. Soc., 2004, 126, 11806–11807; (c)
V. Mamane, T. Gress, H. Krause and A. Fürstner, J. Am.
Chem. Soc., 2004, 126, 8654–8655; (d) F. Gagosz, Org. Lett.,
1
by NMR). H NMR (400 MHz, CDCl
3
) δ 7.46–7.43 (m, 2H,
aromatic CH), 7.39–7.34 (m, 2H, aromatic CH), 7.31–7.26 (m,
H, aromatic CH), 6.30 (dd, J = 9.9 and 1.8 Hz, 1H, alkene
CH d), 6.05 (app. t, J = 4.8 Hz, 1H, alkene CH c), 5.97 (d, J =
1
9
1
.9 Hz, 1H, alkene CH e), 2.36 (d, J = 4.8 Hz, 2H, CH
2
b),
.64–1.39 (m, 10H, cyclohexyl CH2). C NMR (100 MHz,
) δ 140.3 (C), 137.8 (2 peaks, alkene CH e), 134.9 (C),
28.3 (CH), 126.8 (CH), 125.3 (CH), 123.4 (alkene CH d),
22.0 (alkene CH c), 36.3 (broad, cyclohexyl CH ), 36.2
1
3
CDCl
1
1
3
2
(
2
1
alkene CH
1.8 (cyclohexyl CH
2
2
b), 33.4 (cyclohexyl C), 26.3 (cyclohexyl CH
2
),
). EI+-MS m/z 224 (100%, [M] ), 181 (7%),
67 (34%), 153 (8%), 142 (7%), 115 (6%), 91 (6%), 49 (34%).
+
2
005, 7, 4129–4132.
4
(a) N. Marion, G. Lemière, A. Correa, C. Costabile,
R. Ramón, X. Moreau, P. D. Frémont, R. Dahmane,
A. Hours, A. Lesage, J. C. Tablet, J. P. Goddard, V. Gandon,
L. Cavallo, L. Fensterbank, M. Malacira and S. P. Nolan,
Chem. – Eur. J., 2009, 15, 3243–3260; (b) E. Jiménez-Núñez
and A. M. Echavarren, Chem. Rev., 2008, 108, 3326–3350; (c)
T. Godet and P. Belmont, Synlett, 2008, 2513–2517; (d)
S. M. Ma, S. C. Yu and Z. H. Gu, Angew. Chem., Int. Ed.,
2006, 45, 200–203; (e) L. Zhang, J. Sun and S. A. Kozmin,
Adv. Synth. Catal., 2006, 348, 2271–2296; ( f ) C. Nieto-Oberhuber,
M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas
and A. M. Echavarren, Angew. Chem., Int. Ed., 2004, 43,
2402–2406.
NMR experiments
Generation of Au cationic species from AuBr (N-TFS)
III
2
t
t
(
1
1
I Pe) and AgOTf. In acetone-d
6
: AuBr
2
(N-TFS)(I Pe) (10 mg,
−
5
.36 × 10 mols) was reacted with AgOTf (3.5 mg, 1.36 ×
−
5
0
mols) in acetone-d (0.67 mL) at 25 °C. The mixture was
6
1
stirred for 1 h and then a H NMR spectrum was recorded
500 MHz). Characterisation details are included in the main
body of the text.
In CD Cl /CD
was reacted with AgOTf (7 mg, 6.8 × 10 ) or Ag[Al(OC(CF ) ) ]
(
t
−6
2
2
3 2
CN: AuBr (N-TFS)(I Pe) (5 mg, 6.8 × 10 mols)
−
6
3
3 4
−
6
(
(
7.3 mg, 6.8 × 10 mols) in CD Cl (0.6 mL) and CD CN
2 2 3
0.2 mL) at 25 °C. The mixture was stirred for 1 h and then a
1
H NMR spectrum was recorded (500 MHz). Characterisation
details are included in the main body of the text.
5 T. Fan, X. Chen, J. Sun and Z. Lin, Organometallics, 2012, 31,
4221–4227.
t
Binding of 1-hexene to AuBr
2
(N-TFS)(I Pe) and AgOTf, and
6 (a) J. P. Reeds, A. C. Whitwood, M. P. Healy and
I. J. S. Fairlamb, Organometallics, 2013, 32, 3108–3120; (b)
J. P. Reeds, A. C. Whitwood, M. P. Healy and
I. J. S. Fairlamb, Chem. Commun., 2010, 46, 2046–2049.
7 Dynafit program published by Biokin, see: P. Kuzmic,
Anal. Biochem., 1996, 237, 260–273.
t
−5
AgOTf alone. AuBr (N-TFS)(I Pe) (10 mg, 1.36 × 10 mols)
was reacted with AgOTf (3.5 mg, 1.36 × 10 mols) in CD Cl
2
−
5
2
2
(0.6 mL) for 1 h. Then, 1-hexene (3.4 μL, 2 equiv.) was added
and then NMR spectra were recorded (500 MHz). In separate
experiments the equivalents of 1-hexene were varied.
3532 | Catal. Sci. Technol., 2014, 4, 3524–3533
This journal is © The Royal Society of Chemistry 2014