the severe constraints of the crystalline environment.5
When interconversion processes can be observed, the
barriers involved are much higher than in solution,6-11
because of the restrictions to the internal motions
brought about by the surrounding lattice. For these
reasons computations that treat the molecule as an
isolated entity cannot reproduce the values of the barriers
measured in the solid state. There are, however, compu-
tational approaches that take into account the situation
of a molecule in the crystal5a,12-14 and that have been
applied to describe the conformation of polymers in the
solids15 and the dynamics of reorientation within the
lattice.5,12,14-16 However, there are not available examples
where theory and experiment have been both applied to
investigate the interconversion of conformers (or to-
pomers) of organic molecules in the crystalline state. We
thus searched for a case where the barrier for such a
process could be measured in the solids with the purpose
of reproducing this value by theoretical methods.
The title compound (2-naphthylphenylsulfoxide, 1)
turned out to be appropriate for this scope. MM computa-
tions,17 which treat the molecule as an isolated object,
provide the energy map as a function of the rotation
about the phenyl-S and naphthyl-S bonds (x- and
y-axis, respectively, as in Figure 1). The rotation about
the phenyl-S bond (dashed line of Figure 1) corresponds
to a topomerization process that exchanges the ortho,
ortho′ and meta, meta′ positions with a computed barrier
Con for m a tion a l Stu d ies by Dyn a m ic NMR.
99.1 Exp er im en ta l a n d Com p u ted
Deter m in a tion of Rota tion Ba r r ier s in th e
Cr ysta llin e Sta te: Th e Ca se of
Na p h th ylp h en ylsu lfoxid e
Daniele Casarini,*,2a Lodovico Lunazzi,*,2b
Andrea Mazzanti,2b Pierluigi Mercandelli,2c and
Angelo Sironi*,2c
Chemistry Department, University of Basilicata, Potenza,
Italy, Department of Organic Chemistry “A. Mangini”,
University of Bologna, Italy, and Dipartimento di Chimica
Strutturale e Stereochimica Inorganica, University of
Milan and CNR ISTM, Italy
lunazzi@ms.fci.unibo.it
Received J anuary 27, 2004
Ab st r a ct : The 13C NMR CP-MAS spectrum of 2-naph-
thylphenylsulfoxide in the solid state displays line broaden-
ing effects due to the restricted rotation about the Ph-S
bond. Line shape simulation of the temperature-dependent
traces allowed the corresponding barrier to be determined
in the solids (14.7 kcal mol-1). By making use of the
information obtained from single-crystal X-ray diffraction,
this barrier could be satisfactorily reproduced by theoretical
calculations (14.5 kcal mol-1) that take into account the
correlated phenyl motion involving a large set of molecules
in the crystalline state
(5) (a) Gavezzotti, A.; Simonetta, M. Chem Rev. 1982, 82, 1. (b)
Braga, D. Chem Rev. 1992, 92, 633.
(6) (a) Mo¨ller, M.; Gronski, W.; Cantow, H.-J .; Ho¨cker, H. J . Am.
Chem. Soc. 1984, 106, 5093. (b) Emeis, D.; Cantow, H.-J .; Mo¨ller, M.
Polym. Bull. (Berlin) 1984, 12, 557.
(7) Twyman, J . M.; Dobson, C. M. J . Chem. Soc., Chem. Commun.
1988, 786.
The rotational processes that allow the interconversion
between conformers (or topomers) have been widely in-
vestigated by dynamic NMR spectroscopy in solution.3
These studies are often accompanied by theoretical cal-
culations that usually reproduce quite satisfactorily the
experimental barriers.4 This is because the approxima-
tion of considering an isolated molecule model does not
conflict too severely, in the majority of cases, with the
actual situation. The solvent effects upon the barrier are
relatively modest and, if necessary, can be accounted for
by introducing in the calculations appropriate parameters
related to the dielectric constant of the medium.
(8) (a) Riddell, F. G.; Arumugam, S.; Anderson, J . E. J . Chem. Soc.,
Chem. Commun. 1991, 1525. (b) Barrie, P. J .; Anderson, J . E. J . Chem.
Soc., Perkin Trans. 2 1992, 2031. (c) Anderson, J . E.; Casarini, D.;
Lunazzi, L.; Mazzanti, A. J . Org. Chem. 2000, 65, 1729. (d) Anderson,
J . E.; Casarini, D.; Lunazzi, L.; Mazzanti, A. Eur. J . Org. Chem. 2000,
479. (e) Aliev, A. E.; Anderson, J . E.; Butler, D.; Gonzalez-Outerin˜o,
J .; Lunazzi, L.; Mazzanti, A.; Steed, J . Wilhelm, R. Eur. J . Inorg. Chem.
2002, 133.
(9) (a) Riddell, F. G.; Arumugam, S.; Harris, K. D. M.; Rogerson,
M.; Strange. J . H. J . Am. Chem. Soc. 1993, 115, 1881. (b) Riddell, F.G.;
Bremner, M.; Strange, J . H. Magn. Reson. Chem. 1994, 32, 118. (c)
Riddell, F. G.; Bernath, G.; Fu¨lo¨p, F. J . Am. Chem. Soc. 1995, 117,
2327. (d) Riddell, F. G.; Rogerson, M. J . Chem. Soc., Perkin Trans. 2
1996, 493. (e) Riddell, F. G.; Cameron, S.; Holmes, S. A.; Strange, J .
H. J . Am. Chem. Soc. 1997, 119, 7555.
(10) Barnes, J . C.; Chudek, J . A.; Hunter, G.; Blake, A. J .; Dyson,
P. J .; J ohnson, B. F. G.; Weissensteiner, W. J . Chem. Soc., Faraday
Trans. 1995, 91, 2149.
(11) (a) Casarini, D.; Lunazzi, L.; Mazzanti, A. J . Org. Chem. 1998,
63, 9125. (b) Casarini, D.; Foresti, E.; Lunazzi, L., Mazzanti, A. Chem.
Eur. J . 1999, 5, 3501. (c) Lunazzi, L.; Mazzanti, A.; Casarini, D.; De
Lucchi, O.; Fabris, F. J . Org. Chem. 2000, 65, 883. (d) Casarini, D.;
Lunazzi, L.; Mazzanti, A.; Simon, G. J . Org. Chem. 2000, 65, 3207. (e)
Casarini, D.; Lunazzi, L.; Mazzanti, A. Angew. Chem., Int. Ed. 2001,
40, 2536.
(12) Ku¨mmerlen, J .; Sebald, A. Organometallics 1997, 16, 2971.
(13) Mercandelli, P.; Moret, M.; Sironi, A. Inorg. Chem. 1998, 37,
2563.
(14) Neuman, M. A.; J ohnson, M. R.; Radaelli, P. G.; Trommsdorff,
H. P.; Parker, S. F. J . Chem. Phys. 1999, 110, 516.
(15) Miyoshi, T.; Hayashi, S.; Imashiro, F.; Kaito, A. Macromolecules
2002, 35, 2624.
(16) Galli, S.; Mercandelli, P.; Sironi, A. J . Am. Chem. Soc. 1999,
121, 3767.
(17) MMX force field as implemented in the computer package PC
Model, v 7.5; Serena Software: Bloomington, IN.
The situation is quite different when dealing with
molecules in the solid state, where the corresponding
conformers often cannot even interconvert as a result of
(1) Part 98: Bartoli, G.; Lunazzi, L.; Massaccesi, M.; Mazzanti, A.
J . Org. Chem. 2004, 69, 821.
(2) (a) University of Basilicata. (b) University of Bologna. (c)
University of Milan
(3) (a) Dynamic Nuclear Magnetic Resonance Spectroscopy; J ack-
man, L. M., Cotton, F. A., Eds; Academic Press: New York, 1975. (b)
Mann, B. E. Prog. NMR Spectrosc. 1977, 11, 95. (c) Kaplan, J . I.;
Fraenkel, G. NMR of Chemically Exchanging Systems; Academic
Press: New York, 1980. (d) Sandstro¨m, J . Dynamic NMR Spectroscopy;
Academic Press: London, 1982. (e) Oki, M. Applications of Dynamic
NMR Spectroscopy to Organic Chemistry; VCH: Deerfield Beach, 1985.
(4) (a) Berg, U.; Sandstro¨m, J . Adv. Phys. Org. Chem. 1989, 25, 1.
(b) Anderson, J . E. In The Chemistry of Alkanes and Cycloalkanes;
Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1992; Chapter 3.II.D.
(c) Bushweller, C. H. In Acyclic Organonitrogen Stereodynamics;
Lambert, J . B., Takeuchi, Y., Eds.; VCH: New York, 1992; Chapter 1.
(d) J ennings, W. B.; Wilson, V. E. In Acyclic Organonitrogen Stereo-
dynamics; Lambert, J . B., Takeuchi, Y., Eds.; VCH: New York, 1992;
Chapter 6.
10.1021/jo049843p CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/20/2004
3574
J . Org. Chem. 2004, 69, 3574-3577