Organic Letters
Letter
Young, D. D. Bioconjugate Chem. 2015, 26, 1884−1889. (c) Dibowski,
H.; Schmidtchen, F. P. Angew. Chem., Int. Ed. 1998, 37, 476−478.
(4) (a) Tokumasu, K.; Yazaki, R.; Ohshima, T. J. Am. Chem. Soc.
2016, 138, 2664−2669. (b) Smith, A. M. R.; Hii, K. K. Chem. Rev.
2011, 111, 1637−1656. (c) Janey, J. M. Angew. Chem., Int. Ed. 2005,
44, 4292−4300. (d) Erdik, E. Tetrahedron 2004, 60, 8747−8782.
(e) Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem. 2004,
2004, 1377−1385.
presence of Brønsted acid catalysts. Intermediate A undergoes
an intermolecular Michael addition of second amide and proton
transfer to give the allene intermediate B. An intramolecular
Michael addition of intermediate B then produces intermediate
C, which undergoes tautomerization to form the desired
product 3aa.
In conclusion, a novel strategy to access a broad range of α-
(4-oxazolyl)amino acids has been developed by a Brønsted acid
catalyzed tandem reaction of ethyl 2-oxobut-3-ynoates with
amides. We found that the catalytic amount (20 mol %) of 4-
nitrobenzenesulfonic acid efficiently promoted the first imine
formation between an ethyl 2-oxobut-3-ynoate and an amide,
followed by inter- and intramolecular Michael addition with an
amide to construct both the oxazole and amino acid
functionalities. Starting with concisely accessible or commer-
cially available materials, α-(4-oxazolyl)amino acids found in
bioactive molecules were synthesized in a single step with 45−
89% yields. We anticipate that α-(oxazolyl)amino acid
derivatives will be used to discover new biologically active
molecules.
(5) (a) Teegardin, K. A.; Weaver, J. D. Chem. Commun. 2017, 53,
4771−4774. (b) Fisk, J. S.; Mosey, R. A.; Tepe, J. J. Chem. Soc. Rev.
2007, 36, 1432−1440. (c) O’Donnell, M. J. Acc. Chem. Res. 2004, 37,
506−517. (d) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013−3028.
́
(6) (a) Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584−4671.
(b) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106−112.
(7) (a) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947−6983.
(b) Zuend, S. J.; Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N.
Nature 2009, 461, 968−971. (c) Groger, H. Chem. Rev. 2003, 103,
̈
2795−2827.
(8) (a) Aycock, R. A.; Vogt, D. B.; Jui, N. T. Chem. Sci. 2017, 8,
7998−8003. (b) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med.
Chem. 2014, 57, 10257−10274. (c) Ritchie, T. J.; Macdonald, S. J. F.;
Peace, S.; Pickett, S. D.; Luscombe, C. N. MedChemComm 2012, 3,
1062−1069.
(9) Bartfai, T.; Lu, X.; Badie-Mahdavi, H.; Barr, A. M.; Mazarati, A.;
Hua, X.-Y.; Yaksh, T.; Haberhauer, G.; Ceide, S. C.; Trembleau, L.;
ASSOCIATED CONTENT
* Supporting Information
■
S
Somogyi, L.; Krock, L.; Rebek, J., Jr. Proc. Natl. Acad. Sci. U. S. A. 2004,
̈
101, 10470−10475.
The Supporting Information is available free of charge on the
(10) (a) Borthwick, A. D.; Liddle, J. Med. Res. Rev. 2011, 31, 576−
604. (b) Liddle, J.; Allen, M. J.; Borthwick, A. D.; Brooks, D. P.;
Davies, D. E.; Edwards, R. M.; Exall, A. M.; Hamlett, C.; Irving, W. R.;
Mason, A. M.; McCafferty, G. P.; Nerozzi, F.; Peace, S.; Philp, J.;
Pollard, D.; Pullen, M. A.; Shabbir, S. S.; Sollis, S. L.; Westfall, T. D.;
Woollard, P. M.; Wu, C.; Hickey, D. M. B. Bioorg. Med. Chem. Lett.
2008, 18, 90−94.
Experimental procedures, spectroscopic, and crystallo-
Accession Codes
lographic data for this paper. These data can be obtained free of
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(11) (a) Xia, L.; Li, S.; Chen, R.; Liu, K.; Chen, X. J. Org. Chem.
2013, 78, 3120−3131. (b) Li, S.; Chen, R.; Liu, X.; Pan, L.; Xia, L.;
Chen, X. Synlett 2012, 23, 1985−1989.
(12) Wipf, P.; Methot, J.-L. Org. Lett. 2001, 3, 1261−1264.
(13) (a) Ceide, S. C.; Trembleau, L.; Haberhauer, G.; Somogyi, L.;
Lu, X.; Bartfai, T.; Rebek, J., Jr. Proc. Natl. Acad. Sci. U. S. A. 2004, 101,
16727−16732. (b) Haberhauer, G.; Somogyi, L.; Rebek, J., Jr.
Tetrahedron Lett. 2000, 41, 5013−5016.
(14) Mitsuya, H.; Toshihiro, H.; Toshihiko, K.; Rikako, K.; Hiroyuki,
K. Patent No. 2002083111 A2, Oct 24, 2002.
(15) Guo, M.; Li, D.; Zhang, Z. J. Org. Chem. 2003, 68, 10172−
10174.
(16) (a) Jung, H.; Lee, A.; Kim, J.; Kim, H.; Baik, M.-H. Adv. Synth.
Catal. 2017, 359, 3160−3175. (b) Lee, A.; Kim, H. J. Org. Chem. 2016,
81, 3520−3527. (c) Lee, A.; Kim, H. J. Am. Chem. Soc. 2015, 137,
11250−11253. (d) Lee, A.; Ahn, S.; Kang, K.; Seo, M.-S.; Kim, Y.;
Kim, W. Y.; Kim, H. Org. Lett. 2014, 16, 5490−5493.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(17) (a) Luo, W.; Zhao, J.; Ji, J.; Lin, L.; Liu, X.; Mei, H.; Feng, X.
Chem. Commun. 2015, 51, 10042−10045. (b) Guang, J.; Guo, Q.;
Zhao, J. C.-G. Org. Lett. 2012, 14, 3174−3177. (c) Hari, Y.; Tsuchida,
S.; Aoyama, T. Tetrahedron Lett. 2006, 47, 1977−1980. (d) Li, H.;
Wang, Y.-Q.; Deng, L. Org. Lett. 2006, 8, 4063−4065.
(18) (a) Jakubec, P.; Muratore, M. E.; Aillaud, I.; Thompson, A. L.;
Dixon, D. J. Tetrahedron: Asymmetry 2015, 26, 251−261. (b) Kaup-
mees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.; Leito, I. Angew.
Chem., Int. Ed. 2013, 52, 11569−11572.
ACKNOWLEDGMENTS
■
The authors are grateful for the financial support provided by
t h e C 1 G a s R e fi n e r y P r o g r a m ( N R F -
2016M3D3A1A01913256) and the National Research Founda-
tion of Korea (NRF-2017R1A2B4002650).
REFERENCES
■
(1) (a) Rem
́
ond, E.; Martin, C.; Martinez, J.; Cavelier, F. Chem. Rev.
2016, 116, 11654−11684. (b) Craik, D. J.; Fairlie, D. P.; Liras, S.;
Price, D. Chem. Biol. Drug Des. 2013, 81, 136−147. (c) Wang, L.;
Schultz, P. G. Angew. Chem., Int. Ed. 2005, 44, 34−66. (d) Cornish, V.
W.; Mendel, D.; Schultz, P. G. Angew. Chem., Int. Ed. Engl. 1995, 34,
621−633.
(2) Adessi, C.; Soto, C. Curr. Med. Chem. 2002, 9, 963−978.
(3) (a) Kwon, I.; Yang, B. Ind. Eng. Chem. Res. 2017, 56, 6535−6547.
(b) Maza, J. C.; McKenna, J. R.; Raliski, B. K.; Freedman, M. T.;
D
Org. Lett. XXXX, XXX, XXX−XXX