G.L. DiCenzo, H.D. VanEtten / Phytochemistry 67 (2006) 675–683
683
specific to the 30 end of the gene was combined with an
upstream primer starting 688 bp from the ATG at the start
of the cDNA coding region. Both the p11-1 cDNA and
genomic DNA were used as templates in order to detect
sequence differences such as might arise from an intron.
George, H.L., Hirschi, K., VanEtten, H.D., 1998. Biochemical properties
of the products of cytochrome P450 genes (PDA) encoding pisatin
demethylase activity in Nectria haematococca. Arch. Microbiol. 170,
147–154.
Guo, L., Paiva, N.L., 1995. Molecular cloning and expression of alfalfa
(Medicago sativa L.) vestitone reductase, the penultimate enzyme in
medicarpin biosynthesis. Arch. Biochem. Biophys. 320, 353–360.
Guo, L.N., Dixon, R.A., Paiva, N.L., 1994a. The pterocarpan synthase of
alfalfa – association and coinduction of vestitone reductase and 7,20-
4.11. Preparation of 32P-labeled probes
dihydroxy-40-methoxy-isoflavanol (DMI) dehydratase, the
enzymes in medicarpin biosynthesis. FEBS Lett. 356, 221–225.
Guo, L., Dixon, R.A., Paiva, N.L., 1994b. Conversion of vestitone to
medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two
independent enzymes. J. Biol. Chem. 269, 22372–22378.
Han, Y., Liu, X., Benny, U., Kistler, H.C., VanEtten, H., 2001. Genes
determining pathogenicity to pea are clustered on a supernumerary
chromosome in the fungal plant pathogen Nectria haematococca..
Plant J. 25, 305–314.
Martin, M., Dewick, P.M., 1980. Biosynthesis of pterocarpan, isoflavan
and coumestan metabolites of Medicago sativa – the role of an isoflav-
3-ene. Phytochemistry 19, 2341–2346.
2 final
32P-labeled inserts of pVR1 cDNA were made using the
Prime-It II Random Labeling Kit (GibcoBRL). The 32P-
labeled probes were column-purified by elution through
Sephadex G 50.
4.12. Expression of isoflavanone reductase (Sor) activity in
E. coli
Recombinant SOR was produced and its activity mea-
sured as described above for the production of DMDI by
the Vr cDNA clone from alfalfa.
Matthews, D.E., Weiner, E.J., Matthews, P.S., VanEtten, H.D., 1987.
Role of oxygenases in pisatin biosynthesis and in the fungal degrada-
tion of maackiain. Plant Physiol. 83, 365–370.
Matthews, D.E., Plattner, R.D., VanEtten, H.D., 1989. The 6a-oxygen of
the pterocarpan glycinol is derived from molecular oxygen. Phyto-
chemistry 28, 113–115.
Acknowledgements
Miller, P.M., 1955. V-8 Juice agar as a general-purpose medium for fungi
and bacteria. Phytopathol. 45, 461–462.
Paiva, N., Edwards, R., Sun, Y., Hrazdina, G., Dixon, R., 1991. Stress
responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and
expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid
phytoalexin biosynthesis. Plant Mol. Biol. 17, 653–667.
We thank Dr. Nancy Paiva, David Matthews, Qindong
Wu, and Yuegin Sun for technical advice and Dr. Cather-
ine Wasmann for editorial advice. This research was sup-
ported in part by Grant No. DE-FG03-00ER15078 from
the Department of Energy.
Paiva, N.L., Sun, Y., Dixon, R.A., VanEtten, H.D., Hrazdina, G., 1994.
Molecular cloning of isoflavone reductase from pea (Pisum sativum
L.): Evidence for
a 3R-isoflavanone intermediate in (+)-pisatin
biosynthesis. Arch. Biochem. Biophys. 312, 501–510.
References
Preisig, C.L., Matthews, D.E., VanEtten, H.D., 1989. Purification and
characterization of S adenosyl-L-methionine: 6a-hydroxymaackiain 3-
0-methyltransferase from Pisum sativum. Plant Physiol. 91, 559–566.
Preisig, C.L., Bell, J.N., Sun, Y., Hrazdina, G., Matthews, D.E.,
VanEtten, H.D., 1990. Biosynthesis of the phytoalexin pisatin:
isoflavone reduction and further metabolism of the product sophorol
by extracts of Pisum sativum. Plant Physiol. 94, 1444–1448.
Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W.,
1984. Ribosomal DNA spacer-length polymophisms in barley: men-
delian inheritance, chromosomal location, and population dynamics.
Proc. Natl. Acad. Sci. USA 81, 8014–8018.
Aoki, T., Akashi, T., Ayabe, S., 2000. Flavonoids of leguminous plants:
Structure, biological activity, and biosynthesis. J. Plant Res. 113, 475–
488.
Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G.,
Struhl, K., 1993. Current Protocols in Molecular Biology. John Wiley
and Sons, New York.
Banks, S.W., Dewick, P.M., 1982. Biosynthesis of the 6a-hydroxyptero-
carpan phytoalexin pisatin in Pisum sativum. Phytochemistry 21, 2235–
2242.
Banks, S.W., Dewick, P.M., 1983a. Biosynthesis of 6a-hydroxypterocar-
pans: deuterium NMR evidence for direct hydroxylation of pterocar-
pans. Z. Naturforsch. 38c, 185–188.
Banks, S.W., Dewick, P.M., 1983b. Biosynthesis of pisatin: experiments
with enantiomeric precursors. Phytochemistry 22, 1591–1595.
Cruickshank, I.A.M., Perrin, D.R., 1960. Isolation of a phytoalexin from
Pisum sativum L. Nature 187, 799–800.
Dewick, P.M., 1988. Isoflavonoids. In: Harborne, J.B. (Ed.), The
Flavonoids: Advances in Research Since 1980. Chapman & Hall,
London and New York, pp. 125–209.
Dewick, P.M., Ward, D., 1977. Stereochemistry of isoflavone reduction
during pterocarpan biosynthesis: an investigation using deuterium
nuclear magnetic resonance spectroscopy. J. Chem. Soc. Chem.
Commun., 338–339.
Shimada, N., Akashi, T., Aoki, T., Ayabe, S., 2000. Induction of
isoflavonoid pathway in the model legume Lotus japonicus: molecular
characterization of enzymes involved in phytoalexin biosynthesis.
Plant Sci. 160, 37–47.
Tiemann, K., Hinderer, W., Barz, W., 1987. Isolation of NADPH:iso-
flavone oxidoreductase, a new enzyme of pterocarpan phytoalexin
biosynthesis in cell suspension cultures of Cicer areitinum. FEBS Lett.
213, 324–328.
Tiemann, K., Dirk, I., Van Montagu, M., Barz, W., 1991. Pterocarpan
phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer areiti-
num L.) cell cultures. Eur. J. Biochem. 200, 751–757.
Wu, Q., Preisig, C.L., VanEtten, H.D., 1997. Isolation of the cDNAs
encoding (+) 6a-hydroxymaackiain 3-O-methyltransferase, the termi-
nal step for the synthesis of the phytoalexin pisatin in Pisum sativum.
Plant Mol. Biol. 35, 551–560.
Dixon, R.A., 1999. Isoflavonoids: biochemistry, molecular biology, and
biological functions. In: Sankawa, U. (Ed.), Comprehensive Natural
Products Chemistry, Polyketides and Other Secondary Metabolites
Including Fatty Acids and Their Derivatives, vol. 1. Elsevier, Oxford,
pp. 773–823.
Wu, Q., VanEtten, H.D., 2004. Introduction of plant and fungal genes
into pea (Pisum sativum L.) hairy roots reduces their ability to produce
pisatin and affects their response to a fungal pathogen. Mol. Plant-
Microbe Interact. 17, 798–804.