Organometallics
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: mgagne@unc.edu (M.R.G.).
’ ACKNOWLEDGMENT
Support from the U.S. Department of Energy (FG02-
05ER15630), the U.S. Army Research Office, the National Research
Council (fellowship to C.M.-L.), and the UNC Institute for the
Environment/Progress Energy Foundation (fellowship to L.L.A.) is
gratefully acknowledged.
’ REFERENCES
(1) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed.
2003, 42, 5749–5752.
(2) For several general references on alkyl cross-couplings, see: (a)
Cꢀardenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384–387. (b) Terao, J.;
Kambe, N. Acc. Chem. Res. 2008, 41, 1545–1554. (c) Wasa, M.; Engle,
K. M.; Yu, J.-Q. Isr. J. Chem. 2010, 50, 605–616. (d) Luh, T.-Y.; Leung,
M.-k.; Wong, K.-T. Chem. Rev. 2000, 100, 3187–3204.
Figure 2. ORTEP of trans-Pd(PCy3)2(Br)(OAc) (8) (50% probability;
H atoms and one component of the disordered OAc ligand omitted for
clarity). Selected average bond lengths (Å) and angles (deg): PdÀOAc,
2.158; PdÀBr, 2.415; PdÀP1, 2.354, PdÀP2, 2.355, BrÀPdÀOAc, 165.4;
P1ÀPdÀP2, 172.4.
(3) (a) Liegault, B.; Renaud, J.-L.; Bruneau, C. Chem. Soc. Rev. 2008,
37, 290–299. (b) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 674–688. (c) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004,
346, 1525–1532. (d) Netherton, M. R.; Fu, G. C. Palladium Org. Synth.
2005, 14, 124–134. Ni catalysts: (e) Zhou, J.; Fu, G. C. J. Am. Chem. Soc.
2003, 125, 14726–14727. (f) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004,
126, 1340–1341. (g) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004,
126, 7788–7789. (h) Manolikakes, G.; Mu~noz Hernandez, C.; Schade,
M. A.; Metzger, A.; Knochel, P. J. Org. Chem. 2008, 73, 8422–8436.
(i) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009,
131, 9756–9766. Co catalysts: (j) Someya, H.; Ohmiya, H.; Yorimitsu,
H.; Oshima, K. Org. Lett. 2007, 9, 1565–1567. (k) Cahiez, G.; Chaboche,
C.; Duplais, C.; Moyeux, A. Org. Lett. 2008, 11, 277–280. Fe catalysts: (l)
Sherry, B. D.; F€urstner, A. Acc. Chem. Res. 2008, 41, 1500–1511. (m)
Cahiez, G.; Duplais, C.; Moyeux, A. Org. Lett. 2007, 9, 3253–3254.
(4) Nickel is dominant, but cobalt and iron methods have recently
emerged,3iÀ3m and for mechanistic studies, see: (a) Jones, G. D.; Martin,
J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A. D.; Brandon, R. J.;
Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J. Am. Chem. Soc.
2006, 128, 13175–13183. (b) Jones, G. D.; McFarland, C.; Anderson,
T. J.; Vicic, D. A. Chem. Commun. 2005, 4211–4213. (c) Anderson, T. J.;
Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc. 2004, 126, 8100–8101.
(5) For a recent review of methods for the cross-coupling of
secondary alkyl halide electrophiles, see: Rudolph, A.; Lautens, M.
Angew. Chem., Int. Ed. 2009, 48, 2656–2670.
(Figure 2). In fact, for phosphine ligands both larger and smaller
than triethylphosphine, conversion to glucal (not oxyglucal) was
facile (Scheme 6). Though the target organometallic complex was
not detected for PCy3,19 its intermediacy and rapid β-acetoxy
elimination were implied. Since the elimination is dissociative in
phosphine, we envision sterically bulky ligands being crowded out of
the coordination sphere by a bulky pyranosyl moiety and thus
accelerating the elimination; smaller ligands likely lack sufficient
bulk to inhibit elimination.
Scheme 6
(6) Lꢀopez-Pꢀerez, A.; Adrio, J.; Carretero, J. C. Org. Lett. 2009, 11,
5514–5517.
In summary, Pd(PEt3)3 has demonstrated a propensity toward
oxidative addition of pyranosyl halides that leads to stable Pd(PEt3)2-
(Br)(AcO-β-glu) (3), the product of invertive oxidative addition.
The reaction is efficient under ambient conditions and represents a
rare palladium-based C(2°alkyl)ÀX activation and the first isolated
palladium pyranosyl complex. Thermolysis has additionally shown
this product to be susceptible to β-acetoxy elimination rather than
β-hydride elimination. Reactivity studies are under way to test for
efficacy toward valuable pyranoside functionalization.
(7) (a) Lu, Z.; Fu, G. C. Angew. Chem., Int. Ed. 2010, 49, 6676–6678.
(b) Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011, 13,
1218–1221.
(8) (a) Lemieux, R. U.; Huber, G. Can. J. Chem. 1955, 33, 128–133.
(b) Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. J. Am. Chem.
Soc. 1975, 97, 4056–4062.
(9) Jones, G. S.; Scott, W. J. J. Am. Chem. Soc. 1992, 114, 1491–1492.
(10) Pelczar, E. M.; Munro-Leighton, C.; Gagnꢀe, M. R. Organome-
tallics 2009, 28, 663–665.
(11) For previous Ni-catalyzed cross-coupling efforts with glycosyl
halides, see: (a) Gong, H.; Sinisi, R.; Gagnꢀe, M. R. J. Am. Chem. Soc.
2007, 129, 1908–1909. (b) Gong, H.; Gagnꢀe, M. R. J. Am. Chem. Soc.
2008, 130, 12177–12183. (c) Gong, H.; Andrews, R. S.; Zuccarello, J. L.;
Lee, S. J.; Gagnꢀe, M. R. Org. Lett. 2009, 11, 879–882. For previous
photoredox strategies to C-glycoside synthesis, see: (d) Andrews, R. S.;
Becker, J. J.; Gagnꢀe, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274–7276.
(12) Pd(PEt3)3 was prepared by analogy to a method reported by
Fu et al. and used without isolation.1
’ ASSOCIATED CONTENT
S
Supporting Information. Text, figures, and tables giv-
b
ing characterization data and experimental details and
CIF files giving X-ray crystallographic data for 3 and 8.
This material is available free of charge via the Internet at
2648
dx.doi.org/10.1021/om200221r |Organometallics 2011, 30, 2646–2649