5
H. Suzuki and T. Takao, ‘‘Isomerization of Organic Substrates
Catalyzed by Ruthenium Complexes’’, in Ruthenium in Organic
Synthesis, ed. S.-I. Murahashi, Wiley-VCH, Weinheim, 2004. pp. 309.
complex 8 (see ESI{). These values are comparable to those
reported for the most active Ru-catalysts described so far.
18,19
In summary, we have described the syntheses and structures of
chloro-bridged half-sandwich complexes 3 and 4. They were
obtained in a single step by a new type of coupling reaction using
6 J. M. Murphy, J. D. Lawrence, K. Kawamura, C. Incarvito and
J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 13684.
7
8
(a) K. Severin, Curr. Org. Chem., 2006, 10, 217; (b) L. Delaude,
A. Demonceau and A. F. Noels, Top. Organomet. Chem., 2004, 11, 155.
(a) M. Kamigaito, T. Ando and M. Sawamoto, Chem. Rec., 2004, 4,
159; (b) M. Kamigaito, T. Ando and M. Sawamoto, Chem. Rev., 2001,
3 n
[RuCl (solv.) ], tert-butylacetylene and methanol or ethanol. The
complexes are expected to find high interest as starting materials
1
01, 3689.
for the synthesis of novel Ru catalysts. The basic structure of 3 and
9
(a) U. K o¨ lle, J. Kossakowski, D. Grumbine and T. D. Tilley, Inorg.
Synth., 1992, 29, 225; (b) T. D. Tilley, R. H. Grubbs and J. E. Bercaw,
Organometallics, 1984, 3, 274; (c) N. Oshima, H. Suzuki and Y. Moro-
oka, Chem. Lett., 1984, 1161.
4
are similar to that of complex 2, which represents one of the key
entry points for the synthesis of (cyclopentadienyl)Ru catalysts.
The p-ligands of 3 and 4, on the other hand, are quite different
from Cp* because of the sterically demanding tert-butyl and
neopentyl groups, and the alkoxy substituent. This is evidenced by
1
0 (a) E. P. K u¨ ndig and F. R. Monnier, Adv. Synth. Catal., 2004, 346, 901;
b) B. M. Trost and C. M. Older, Organometallics, 2002, 21, 2544; (c)
T. P. Gilla and K. R. Mann, Organometallics, 1982, 1, 485.
(
2
the synthesis of 7, a 16e complex which is not accessible with the
11 For a discussion about metal–metal interactions in dimer 2, see: (a)
J. E. McGrady, Angew. Chem., Int. Ed., 2000, 39, 3077; (b) U. K o¨ lle,
K. Lueken, K. Handrick, H. Schilder, J. K. Burdett and S. Balleza,
Inorg. Chem., 1995, 34, 6273; (c) U. K o¨ lle, J. Kossakowski, N. Klaff,
L. Wesemann, U. Englert and G. E. Heberich, Angew. Chem., Int. Ed.
Engl., 1991, 30, 690.
standard Cp* ligand. The facile transformation into mononuclear
II
Ru complexes and the application of 8 and 9 as highly efficient
racemization catalysts under mild conditions represents further
evidence for the utility of 3 and 4.
1
2 (a) C. S. Chin and H. Lee, Chem.–Eur. J., 2004, 10, 4518; (b) E. Becker,
K. Mereitner, M. Puchberger, R. Schmid, K. Kirchner, A. Doppiu and
A. Salzer, Organometallics, 2003, 22, 3164; (c) U. Radhakrishnan,
V. Gevorgyan and Y. Yamamoto, Tetrahedron Lett., 2000, 41, 1971; (d)
H.-J. Kim, N.-S. Choi and S. W. Lee, J. Organomet. Chem., 2000, 616,
67; (e) A. D. Burrows, M. Green, J. C. Jeffery, J. M. Lynam and
M. F. Mahon, Angew. Chem., Int. Ed., 1999, 38, 3043; (f) E. S. Johnson,
G. J. Balaich, P. E. Fanwick and I. P. Rothwell, J. Am. Chem. Soc.,
1997, 119, 11086; (g) J. M. O’Connor, K. Hiibner, R. Merwin,
P. K. Gantzel and B. S. Fong, J. Am. Chem. Soc., 1997, 119, 3631; (h)
G. Moran, M. Green and A. G. Orpen, J. Organomet. Chem., 1983,
250, C15.
Notes and references
5
g -Indenyl and tris(pyrazolyl)borate ligands have shown considerable
{
success as substitutes for Cp and Cp* ligands (see refs. 1–8).
§
reaction, the commercial [RuCl
An excess of water was found to reduce the overall yield. Prior to the
3
(H
2
O) ] was therefore treated with THF, as
n
detailed in the ESI.{
"
Crystal data for complex 3: C38
space group P2 /c, a = 23.624(2), b = 14.0305(10), c = 12.2973(8) s, b =
0.572(6)u, V = 4075.8(5) s , Z = 4, rcalc = 1.465 g cm , m = 1.034 mm
F(000) = 1864, crystal dimensions 0.24 6 0.20 6 0.14 mm, T = 140(2) K,
Mo-K
radiation, l = 0.71073 s, h = 2.59–25.03u, 228 ¡ h ¡ 28, 213 ¡
k ¡ 16, 214 ¡ l ¡ 14, 23827 reflections collected, 7185 independent
reflections, Rint = 0.0751, R [I . 2s(I)] = 0.0586, wR (all data) = 0.1557,
largest difference peak 1.199 e s , largest difference minimum
H
66Cl
4 2 2 r
O Ru , M = 898.85, monoclinic,
1
3
23
21
,
9
13 (a) M. S. Lim, J. Y. Baeg and S. W. Lee, J. Organomet. Chem., 2006,
691, 4100; (b) W. S. Han and S. W. Lee, Organometallics, 2005, 24, 997.
14 For the reaction of complex 2 with alkynes, see: (a) T. Fukuyama,
R. Yamaura, Y. Higashibeppu, T. Okamura, I. Ryu, T. Kondo and
T.-A. Mitsudo, Org. Lett., 2005, 7, 5781; (b) I. Yamaguchi, K. Osakada
and T. Yamamoto, Inorg. Chim. Acta, 1994, 220, 35.
a
1
2
2
3
2
3
2
C
1
0.987
48ClOPRu, M
7.879(3), b = 9.4034(7), c = 20.2160(16) s, b = 92.158(8)u, V =
e
s
.
CCDC 609454. Crystal data for complex 7:
1
5 (a) J. Huang, E. D. Stevens, S. P. Nolan and J. L. Petersen, J. Am.
37
H
r
= 676.24, monoclinic, space group P2 /c, a =
1
Chem. Soc., 1999, 121, 2674; (b) J. Huang, E. D. Stevens, S. P. Nolan
and J. L. Petersen, Organometallics, 1999, 121, 2674; (c) L. Luo and
S. P. Nolan, Organometallics, 1994, 13, 4781; (d) T. J. Johnson,
K. Folting, W. E. Streib, J. D. Martin, J. C. Huffman, S. A. Jackson,
O. Eisenstein and K. G. Caulton, Inorg. Chem., 1995, 34, 488; (e)
B. K. Campion, R. H. Heyn and T. D. Tilley, J. Chem. Soc., Chem.
Commun., 1988, 278.
6 T. Braun, G. M u¨ nch, B. Windm u¨ ller, O. Gevert, M. Laubender and
H. Werner, Chem.–Eur. J., 2003, 9, 2516.
7 For analogous reactions with complex 2, see: (a) B. Steinmetz and
W. A. Schenk, Organometallics, 1999, 18, 943; (b) U. K o¨ lle, B.-S. Kang
and U. Englert, J. Organomet. Chem., 1991, 420, 227.
3
23
21
3
396.3(6) s , Z = 4, rcalc = 1.323 g cm , m = 0.614 mm , F(000) = 1416,
crystal dimensions 0.61 6 0.34 6 0.15 mm, T = 100(2) K, Mo-K
radiation, l = 0.71073 s, h = 3.10–25.03u, 221 ¡ h ¡ 21, 211 ¡ k ¡ 11,
24 ¡ l ¡ 23, 60255 reflections collected, 5984 independent reflections,
int = 0.0744, R [I . 2s(I)] = 0.0361, wR (all data) = 0.0814, largest
difference peak 0.581 e s , largest difference minimum 20.686 e s
a
2
R
1
2
23
23
.
1
CCDC 631864. For crystallographic data in CIF or other electronic format
see DOI: 10.1039/b618712a
1
1
(a) B. N. Trost, M. U. Frederiksen and M. T. Rudd, Angew. Chem., Int.
Ed., 2005, 44, 6630; (b) S.-I. Murahashi, Ruthenium in Organic Synthesis,
Wiley-VCH, Weinheim, 2004; (c) C. Bruneau and P. H. Dixneuf,
Ruthenium Catalysts and Fine Chemistry, Springer, Berlin, 2004; (d)
S. D e´ rien and P. H. Dixneuf, J. Organomet. Chem., 2004, 689, 1382; (e)
B. M. Trost, F. D. Toste and A. B. Pinkerton, Chem. Rev., 2001, 101,
1
8 For reviews, see: (a) N. J. Turner, Curr. Opin. Chem. Biol., 2004, 8, 114;
(b) O. P a` mies and J.-E. B a¨ ckvall, Chem. Rev., 2003, 103, 3247; (c)
H. Pellisier, Tetrahedron, 2003, 59, 8291; (d) M.-J. Kim, Y. Ahn and
J. Park, Curr. Opin. Biotechnol., 2002, 13, 578.
1
9 For some highly active racemization catalysts, see: (a) B. Mart ´ı n-
Matute, M. Edin, K. Bog a´ r, F. B. Kaynak and J.-E. B a¨ ckvall, J. Am.
Chem. Soc., 2005, 127, 8817; (b) N. Kim, S.-B. Ko, M. S. Kwon,
M.-J. Kim and J. Park, Org. Lett., 2005, 7, 4523; (c) J. H. Choi,
Y. K. Choi, Y. H. Kim, E. S. Park, E. J. Kim, M.-J. Kim and J. Park,
J. Org. Chem., 2004, 69, 1972; (d) B. Mart ´ı n-Matute, M. Edin, K. Bog a´ r
and J.-E. B a¨ ckvall, Angew. Chem., Int. Ed., 2004, 116, 6535; (e)
M.-J. Kim, Y. I. Chung, Y. K. Choi, H. K. Lee, D. Kim and J. Park,
J. Am. Chem. Soc., 2003, 125, 11494; (f) J. H. Choi, Y. H. Kim,
S. H. Nam, S. T. Shin, M.-J. Kim and J. Park, Angew. Chem., Int. Ed.,
2002, 114, 2373.
2
9
067; (f) T. Naota, H. Takaya and S.-I. Murahashi, Chem. Rev., 1998,
8, 2599.
(a) C. Bruneau, J.-L. Renaud and B. Demerseman, Chem.–Eur. J., 2006,
2, 5178; (b) J.-L. Renaud, B. Demerseman, M. D. Mbaye and
2
1
C. Bruneau, Curr. Org. Chem., 2006, 10, 115; (c) T. Kondo and
T.-A. Mitsudo, Curr. Org. Chem., 2002, 6, 1163.
3
4
Y. Nishibayashi and S. Uemura, Curr. Org. Chem., 2006, 10, 135.
Y. Yamamoto and K. Itoh, ‘‘Carbon–Carbon Bond Formations via
Ruthenacycle Intermediates’’, in Ruthenium in Organic Synthesis, ed.
S.-I. Murahashi, Wiley-VCH, Weinheim, 2004, pp. 95.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 1837–1839 | 1839