M. Hruby et al.
Haemolytic activity is a straightforward measure of
eventual membrane toxicity due to the amphiphilic
character of the copolymers. All the copolymers have
shown no toxicity (haemolysis less than 3.5% even at the
highest concentration used (1 mg ꢂ mLꢁ1) which corre-
sponds to the hypothetical total dose of 5 g per human
with a total blood volume of 5 L, (see Supporting Informa-
tion for a chart).
[7] R. Hoogenboom, F. Wiesbrock, H. Huang, M. A. M. Leenen,
H. M. L. Thijs, S. F. G. M. van Nispen, M. van der Loop, C.-A.
Fustin, A. M. Jonas, J. F. Gohy, U. S. Schubert, Macromolecules
2006, 39, 4719.
[8] R. Hoogenboom, F. Wiesbrock, M. A. M. Leenen, H. M. L. Thijs,
H. Huang, C.-A. Fustin, P. Guillet, J.-F. Gohy, U. S. Schubert,
Macromolecules 2007, 40, 2837.
[9] M. Einzmann, W. H. Binder, J. Polym. Sci. A, Polym. Chem. 2001,
39, 2821.
[10] A. Mahmud, X. B. Xiong, H. M. Aliabadi, A. Lavasanifar, J. Drug
Targeting 2007, 15, 553.
[11] V. P. Torchilin, Pharm. Res. 2007, 24, 1.
Conclusion
[12] M. Hruby, C. Konak, J. Kucka, M. Vetrik, S. K. Filippov,
D. Vetvicka, H. Mackova, G. Karlsson, K. Edwards,
B. Rihova, K. Ulbrich, Macromol. Biosci. 2009, 9, 1016.
[13] H. Uyama, S. Kobayashi, Chem. Lett. 1992, 9, 1643.
[14] D. Christova, R. Velichkova, W. Loos, E. J. Goethals, F. Du. Prez,
Polymer 2003, 44, 2255.
We have synthesized ABA triblock copolymers poly[2-
methyl-2-oxazoline-block-(2-isopropyl-2-oxazoline-co-2-
butyl-2-oxazoline)-block-2-methyl-2-oxazoline] with two
hydrophilic A blocks and one central thermoresponsive B
block with different monomer unit ratios. These polymers
are soluble in aqueous millieu, molecularly dissolved below
the cloud point temperature of the thermoresponsive block
and form micelles at higher temperature. Micelles are
formed within a narrow temperature range. The CPT of the
thermoresponsive block was adjusted with 2-butyl-2-
oxazoline (hydrophobic monomer lowering the CPT) to 2-
isopropyl-2-oxazoline (main monomer giving thermore-
sponsive properties to its copolymers) ratio and size of the
micelles was also influenced by the A to B block weight
ratio. A phenolic moiety was introduced into the above
stated polymer to allow radionuclide labeling with iodine
radioisotopes for both diagnostics and therapy of solid
tumors. Such polymer was then radiolabeled with 125I in
good yield with sufficient in vitro stability under model
conditions.
[15] J. S. Park, K. Kataoka, Macromolecules 2006, 39, 6622.
[16] J. S. Park, K. Kataoka, Macromolecules 2007, 40, 3599.
[17] R. Hoogenboom, H. M. L. Thijs, M. J. H. C. Joachems, B. M. van
Lankvelt, M. W. M. Fijten, U. S. Schubert, Chem. Commun.
2008, 44, 5758.
[18] A. Gress, A. Volkel, H. Schlaad, Macromolecules 2007, 40, 7928.
[19] M. Hruby, V. Subr, J. Kucka, J. Kozempel, O. Lebeda, A. Sikora,
Appl. Radiat. Isot. 2005, 63, 423.
[20] S. Huber, R. Jordan, Colloid Polym. Sci. 2008, 286, 395.
[21] L. Del Villano, R. Kommedal, M. W. M. Fijten, U. S. Schubert,
R. Hoogenboom, M. A. Kelland, Energy Fuels 2009, 23, 3665.
[22] M. W. M. Fijten, C. Haensch, B. M. van Lankvelt,
R. Hoogenboom, U. S. Schubert, Macromol. Chem. Phys.
2008, 209, 1887.
[23] V. O. Aseyev, H. Tenhu, F. M. Winnik, ‘‘Temperature Depen-
dence of the Colloidal Stability of Neutral Amphiphilic Poly-
mers in Water’’, in: Conformation-Dependent Design of
Sequences in Copolymers II, Advances in Polymer Science
Series Volume 196, Springer, Berlin/Heidelberg 2006, p. 1.
[24] V. Aseyev, S. Hietala, A. Laukkanen, M. Nuopponen,
O. Confortini, F. E. Du Prez, H. Tenhu, Polymer 2005, 46,
7118.
Acknowledgements: Financial support from the Academy of
Sciences of the Czech Republic (grant # KAN 200200651), the Grant
Agency of the Czech Republic (grant # P207/10/P054, # 202/09/2078)
and the Ministry of Education, Youth and Sports of the Czech
Republic (grant # IM 4635608802) is gratefully acknowledged.
[25] P. Kujawa, V. Aseyev, H. Tenhu, F. M. Winnik, Macromolecules
2006, 39, 7686.
[26] A. Laukkanen, L. Valtola, F. M. Winnik, H. Tenhu, Macromol-
ecules 2004, 37, 2268.
[27] P. Kujawa, H. Watanabe, F. Tanaka, F. M. Winnik, Eur. Phys. J. E
2005, 17, 129.
Received: January 25, 2010; Revised: March 8, 2010; Published
online: May 20, 2010; DOI: 10.1002/mabi.201000034
[28] K. Akiyoshi, E. C. Kang, S. Kurumada, J. Sunamoto, T. Principi,
F. M. Winnik, Macromolecules 2000, 33, 3244.
[29] T. Koga, F. Tanaka, R. Motokawa, S. Koizumi, F. M. Winnik,
Macromolecules 2008, 41, 9413.
Keywords: drug delivery systems; micelles; radiation; synthesis;
thermal properties
[30] P. Kujawa, F. Tanaka, F. M. Winnik, Macromolecules 2006, 39,
3048.
[31] P. Kujawa, F. Segui, S. Shaban, C. Diab, Y. Okada, F. Tanaka,
F. M. Winnik, Macromolecules 2006, 39, 341.
[32] R. Obeid, F. Tanaka, F. M. Winnik, Macromolecules 2009, 42,
5818.
[1] N. Adams, U. S. Schubert, Adv. Drug Delivery Rev. 2007, 59,
1504.
[2] J. S. Park, Y. Akiyama, F. M. Winnik, K. Kataoka, Macromol-
ecules 2004, 37, 6786.
[33] R. Obeid, E. Maltseva, A. F. Thunemann, F. Tanaka, F. M.
Winnik, Macromolecules 2009, 42, 2204.
[3] R. Hoogenboom, Angew. Chem., Int. Ed. 2009, 48, 7978.
[4] B. Pidhatika, J. Moller, V. Vogel, R. Konradi, Chimia 2008, 62,
264.
[34] N. Morimoto, R. Obeid, S. Yamane, F. M. Winnik, K. Akiyoshi,
Soft Matter 2009, 5, 1597.
[5] C. Diab, Y. Akiyama, K. Kataoka, F. M. Winnik, Macromolecules
2004, 37, 2556.
[35] M. Hruby, C. Konak, K. Ulbrich, J. Controlled Release 2005, 103,
137.
[6] P. Persigehl, R. Jordan, O. Nuyken, Macromolecules 2000, 33,
6977.
[36] C. Diehl, H. Schlaad, Macromol. Biosci. 2009, 9, 157.
Macromol. Biosci. 2010, 10, 916–924
924
ß 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DOI: 10.1002/mabi.201000034