M.V. Motyakin et al. / Spectrochimica Acta Part A 63 (2006) 802–815
815
4. Conclusion
[2] K.A. Davis, K. Matyjaszewski, Statistical, Gradient, Block and Graft
Copolymers by Controlled/Living Radical Polymerization. Advances in
Polymer Science, vol. 159, Springer Verlag, Berlin, 2002.
[3] C.J. Hawker, A.W. Bosman, E. Harth. Chem. Rev. 101 (2001) 3661.
[4] M.U. Zaremskii, V.B. Golubev, Polym. Sci. 43C (2001) 81.
[5] G.V. Korolev, A.P. Marchenko, Russ. Chem. Rev. 69 (2000) 409.
[6] D.F. Grishin, L.L. Semyonycheva, E.V. Kolyakina, Mendeleev Commun.
N6 (1999) 250.
[7] J.-M. Catala, S. Jousset, J.-P. Lamps, Macromolecules 34 (2001) 8654.
[8] M.-O. Zink, A. Kramer, P. Nesvadba, Macromolecules 33 (2000) 8106.
[9] C. Detremleur, V. Sciannamea, C. Koulic, et al., Macromolecules 35
(2002) 7214.
[10] V.B. Golubev, M.Yu. Zaremski, A.P. Orlova, A.V. Olenin, Polym. Sci.
46A (2004) 295.
[11] M.Yu. Zaremski, A.P. Orlova, E.S. Garina, A.V. Olenin, et al., Polym.
Sci. 45A (2003) 502.
[12] E.G. Jansen, Acc. Chem. Res. (1971) 31.
[13] A.L. Buchachenko, Stable Radicals, Consultants Bureau, New York,
1965.
[14] A.L. Buchachenko, A.M. Wasserman, Stable Radicals. Chemical Struc-
ture, Reactivity and Applications, Chemistry, Moscow, 1973 (in Rus-
sian).
[15] G.R. Chalfont, M.I. Perkins, A. Horsfield, J. Am. Chem. Soc. 90 (1968)
7141.
[16] E.G. Rozantsev, Free Iminoxyl Radikals, M. Chimija, 1970 (in Russian).
[17] I. Gyongyhalmi, F. Foldes-Berezsnich, F. Tudesh, Eur. Polym. J. 31
(1995) 45.
[18] M.K. Georges, R.P.N. Veregin, P.M. Kazmaier, G.K. Hamer, Polym.
Mater. Sci. Eng. 68 (1993) 6.
[19] W. Aherens, A. Berndt, Tetrahedron Lett. (1973) 4281.
[20] S. Terabe, R. Koneka, J. Chem. Soc. Perkin II (1973) 369.
[21] H.G. Aurich, W. Weiss, Top. Curr. Chem. 59 (1975) 65.
[22] E.G. Rozantsev, V.D. Sholle, Organic Chemistry of Free Radicals, Chem-
istry, Moscow, 1979 (in Russian).
Result presented in this study show that stable radicals are
derived from inhibitor molecules in process of styrene polymer-
ization. The nitroxide radicals are produced from nitrosocom-
pound, hindered hydroxylamine, nitrophenols and nitroanisoles.
The phenoxyl radicals are produced from quinine methides and
naphoxyl radicals are generated from 2-nitro-1-naphtol. These
radicals can participate in process of living radical polymeriza-
tion as the mediators and can effect significantly on kinetics of
polymerization and structure the resulting polymer.
Toperformfunctionofreversibleinhibitorsthestableradicals
must fill several requirements [4].
First, they are bound to be stable at temperatures of the living
polymerization carrying out.
Second, the concentration of stable radicals should fall in
the range of 10−5 to 10−3 M at normal concentrations of the
growing polymeric radicals. At lower concentrations, the liv-
ing feature of polymerization is affected by strong contribution
of quadratic termination of the growing polymeric radicals. At
higher concentrations, the rate of polymerization is too slow.
Third, the concentration of the stable radicals-inhibitors may
not vary essentially during the polymerization except for initial
time interval when the process attains the steady state regime.
Essential reduction of the stable radicals concentration during
polymerization causes a rise in fraction of “dead” chains. Gen-
erally, this happens due to side chemical reactions.
As is evident from our work, the majority of examined com-
pounds fit satisfactorily the requirements formulated above.
These compounds generate stable radicals in the necessary
concentrations, which generally vary only slightly during poly-
merization. It must be emphasized that the listed requirements
are necessary but not sufficient for realization of living radical
polymerization. Nevertheless, there is reason to hope that the
compounds represented in this paper offer the new contribu-
tors of stable radicals capable by means of reversible inhibition
to control the growth of the polymeric chain in reactions of
polymerization. Effectiveness of these compounds will be char-
acterized in future researches.
[23] A.M.d’A. Rocha Gonsalves, J.M.T.B. Varejao, M.M. Pereira, J. Hete-
cyclic Chem. 28 (1991) 640.
[24] E.G. Jansen, J. Am. Chem. Soc. 87 (15) (1965) 3531.
[25] N.I. Boguslavskaya, G.F. Mart’yanova, O.E. Yakimchenko, Ya.S. Lebe-
dev, et al., Dokladi AN SSSR 220 (3) (1975) 617.
[26] M.M. McMillian, R.O.C. Norman, J. Chem. Soc. B (1968) 590.
[27] A.A. Volod’kin, V.V. Ershov, Uspechi chimii 57 (4) (1988) 595.
[28] E.R. Altwioker, Chem. Rev. 67 (5) (1967) 475.
[29] V.V. Ershov, G.A. Nikiforov, A.A. Volod’kin., Hindered Phenols, M.
Chimija, 1972 (in Russian).
[30] L. Filar, S. Winstein, Tetrahedron Lett. (1960) 9.
[31] A.A. Volod’kin., V.V. Ershov, L.I. Kudinova, Izvestija AN SSSR, ser.
Chimicheskaja (1978) 512.
[32] R.H. Bauer, G.M. Coppinger, Tetrahedron (1963) 1201.
[33] G.M. Coppinger, J. Am. Chem. Soc. 86 (1964) 4385.
[34] B.R. Loy., J. Org. Chem. 31 (1966) 2386.
Acknowledgements
[35] L.R. Mahoney, M.A. Darooge, J. Am. Chem. Soc. 89 (1967) 5619.
[36] J. Pospisil, S. Nespurek, H. Sweifel, Polym. Degrad. Stab. 54 (1996),
7, 15.
[37] N.V. Zolotova, M.B. Tokareva, E.T. Denisov, et al., Kinetika I kataliz
20 (1979) 56 (in Russian).
The authors thank Prof. V.B. Golubev and Dr. M.Yu. Zarem-
ski for helpful discussion.
References
[38] N.V. Zolotova, F.A. Galieva, M.B. Tokareva, E.T. Denisov, et al.,
Kinetika I kataliz 20 (1979) 48 (in Russian).
[1] K. Matyjaszewski (Ed.), Advances in Controlled/Living Radical Poly-
merization, Oxford University Press, Oxford, 2003.
[39] V.D. Pokhodenko, Phenoxyl radicals. Kiev. Haukova dumka., 1969 (in
Russian).