Chemiluminescence of DyI and NdI in water
Russ.Chem.Bull., Int.Ed., Vol. 56, No. 10, October, 2007
1959
2
2
is deactivated with photon emission (see Scheme 1, reacꢀ
tion (2)).
The energy values necessary for the population of the
Nd3+* (1.44 eV) and Dy3+* (2.68 eV) excited states were
6. R. G. Bulgakov, S. P. Kuleshov, V. N. Khandozhka, I. P.
Beletskaya, G. A. Tolstikov, and V. P. Kazakov, Dokl. Akad.
Nauk SSSR, 1989, 304, 114 [Dokl. Chem., 1989 (Engl.
Transl.)].
7
. N. B. Mikheev, Zh. Neorg. Khim., 1984, 29, 450 [J. Inorg.
Chem. USSR, 1984, 29 (Engl. Transl.)].
estimated from the positions of the shortꢀwavelength
maxima in the PL spectra (see Figs 1 and 2). The free
Gibbs energy (∆G°) of reaction (1) (see Scheme 1) was
determined by the known2 Weller equation
8
. L. J. Nugent, R. D. Baybarz, J. L. Burnett, and J. L. Ryan,
J. Phys. Chem., 1973, 77, 1528.
4
9. M. N. Bochkarev and A. A. Fagin, Chem. Eur. I., 1999,
, 2990.
5
•
–
∆
G° (eV) = E°(Ln3+/Ln2+) – E°(H O/H ,OH ) –
2
1
1
0. M. A. Katkova, G. K. Fukin, A. A. Fagin, and M. N.
Bochkarev, J. Organomet. Chem., 2003, 682, 218.
2
ke /(εr) – E*(Ln3+),
–
(I)
1. M. N. Bochkarev, I. L. Fedushkin, A. A. Fagin, T. V.
Petrovskaya, J. W. Ziller, R. N. R. BroomhallꢀDillard, and
W. J. Evans, Angew. Chem., Int. Ed., 1997, 35, 133.
2. R. G. Bulgakov, V. P. Kazakov, and G. A. Tolstikov,
Khemilyuminestsentsiya metalloorganicheskikh soedinenii
[Chemiluminescence of Organometallic Compounds], Nauka,
Moscow, 1989, 220 pp. (in Russian).
where E°(Ln3+/Ln2+) and E°(H O/H ,OH ) are the oxiꢀ
•
–
2
II
dation potential of the Ln ion and the reduction potenꢀ
tial of water, respectively; E*(Ln3 ) is the energy of
the excited state of the CL emitter; k is the Boltzmann
constant; е is the electron charge; ε is the dielectric
+
1
2
5
constant of the solvent (for water 78.5) ; r is the disꢀ
II
26
13. R. F. Vasil´ev, Optika i spektroskopiya [Optics and Spectroꢀ
scopy], 1965, 18, 236 (in Russian).
tance between the Ln atom and H O (0.5 nm). The
2
3
+
2+ 8
substitution of the corresponding E°(Ln /Ln ) and
E°(H O/H ,OH ) values into Eq. (I) gave the ∆G° valꢀ
1
4. G. Charlot, Les Methodes de la Chimie Analytique. Analyse
•
– 27
2
ie
Quantitative Minerale, Masson et C Ed´iteurs, Paris, 1961.
ues for the hydrolysis of compounds 1 and 2
1
5. F. Butement, Trans. Faraday Soc., 1948, 309, 617.
G° = E°(Dy3+/Dy2+) – E°(H O/H ,OH ) –
•
–
16. Y. Haas, G. Stein, and M. Tomkiewicz, J. Chem. Phys.,
970, 74, 2558.
∆
2
1
ke /(εr) – E*(Dy3+) =
2
–
=
1
7. R. G. Bulgakov, V. P. Kazakov, and V. N. Korobeinikov,
–2.56 – (–0.41) – 0.04 – 2.68 = –4.87 (eV),
(II)
Optika i spektroskopiya [Optics and Spectroscopy], 1973, 35,
8
50 (in Russian).
•
–
∆
G° = E°(Nd3+/Nd2+) – E°(H O/H ,OH ) –
ke /(εr) – E*(Nd3+) =
2
2
18. G. Adachi, K. Tomokiyo, K. Sorita, and J. Shiokawa,
–
=
J. Chem. Soc., Chem. Commun., 1980, 914.
1
9. N. S. Poluektov, L. I. Kononenko, N. P. Efryushina, and
S. V. Bel´tyukova, Spektrofotometricheskie i lyuminestsentnye
metody opredeleniya lantanidov [Spectrophotometric and Luꢀ
minescence Determination of Lanthanides], Naukova Dumka,
Kiev, 1989, 254 pp. (in Russian).
–2.62 – (–0.41) – 0.04 – 1.44 = –3.69 (eV).
(III)
The resulting ∆G° values indicate that electron transꢀ
fer from the both Ln atoms is an exothermic process and
the amount of the evolved energy is quite sufficient for the
formation of the Dy3+* and Nd3+* ions.
Thus, the CL accompanying the reactions of iodides
DyI and NdI with water was found and studied for the
II
20. R. G. Bulgakov, S. P. Kuleshov, A. N. Zuzlov, I. R.
Mullagaleev, and L. M. Khalilov, J. Organomet. Chem., 2001,
6
21. K. Nakamoto, Infrared and Raman Spectra of Inorganic
and Coordination Compounds, John Wiley and Sons, New
York, 1986.
36, 56.
2
2
first time, the products were identified, and the energy
parameters of the process were estimated.
2
2. M. N. Bochkarev, A. A. Fagin, and G. V. Khoroshen´kov,
Izv. Akad. Nauk, Ser. Khim., 2002, 1757 [Russ. Chem. Bull.,
Int. Ed., 2002, 51, 1909].
3. A. F. Popov and Zh. P. Piskunov, Struktura i osnovnost´
aminov v problemakh fizikoꢀorganicheskoi khimii [Structure
and Basicity of Amines in Problems of Physical Organic Chemꢀ
istry], Naukova Dumka, Kiev, 1978, 44 pp. (in Russian).
This work was financially supported by the Russian
Foundation for Basic Research (Project No. 04ꢀ03ꢀ
3
2093).
2
References
. M. Paetz and M. Elbanowski, Photochem. Photobiol., A:
1
24. A. Weller, J. Chem. Phys., 1967, 46, 4984.
25. A. I. Gordon and R. A. Ford, The Chemist´s Companion,
John Wiley and Sons, New York—London—Sydney—
Toronto, 1972.
26. E. I. Kapinus, Fotonika molekulyarnykh kompleksov
[Photonics of Molecular Complexes], Naukova Dumka, Kiev,
1988, 256 pp. (in Russian).
Chem., 1990, 55, 63.
2
3
4
5
. M. Elbanowski, J. Wierzchowski, M. Paetzand, and
J. Slawinski, Z. Naturforsch., Teil A, 1983, 38, 808.
. K. Staninski, M. Kaczmarek, G. Schroeder, and
M. Elbanowski, Monatsh. Chem., 1999, 130, 1311.
. A. C. Thomas and A. B. Ellis, J. Chem. Soc., Chem. Commun.,
1
984, 19, 1270.
27. N. L. Glinka, Obshchaya khimiya [General Chemistry],
Khimiya, Leningrad, 1980, 719 pp. (in Russian).
. R. G. Bulgakov, S. P. Kuleshov, V. N. Khandozhka, I. P.
Beletskaya, G. A. Tolstikov, and V. P. Kazakov, Izv. Akad.
Nauk SSSR, Ser. Khim., 1988, 1937 [Bull. Acad. Sci. USSR,
Div. Chem. Sci., 1988, 37 (Engl. Transl.)].
Received December 11, 2006;
in revised form June 22, 2007