10.1002/cssc.201802275
ChemSusChem
COMMUNICATION
H. Wang, S. Xu, Y. Manaka, Y. Suna, H. Kambayashi, J. T. Muckerman,
E. Fujita, Y. Himeda, ChemSusChem 2014, 7, 1976-1983; c)) W.-H.
Wang, J. F. Hull, J. T. Muckerman, E. Fujita, T. Hirose, Y. Himeda,
Chem. Eur. J. 2012, 18, 9397-9404.
Experimental Section
Full experimental details available as supporting information
[14] C. L. Pitman, K. R. Brereton, A. J. M. Miller, J. Am. Chem. Soc. 2016,
138, 2252-2260.
[15] W.-H. Wang, M. Z. Ertem, S. Xu, N. Onishi, Y. Manaka, Y. Suna, H.
Kambayashi, J. T. Muckerman, E. Fujita, Y. Himeda, ACS Catal. 2015,
5, 5496-5504.
Acknowledgements ((optional))
The authors acknowledge the China Scolarship Council for a
grant to SW. The authors are grateful to Dr. Lucie Norel (Institut
des Sciences Chimiques de Rennes) for the cyclic voltammetry
measurements and to Dr. Thierry Labasque (Observatoire des
Sciences de l’Univers, UMR 6118, Géosciences Rennes, CNRS,
Université de Rennes 1, France) for gas analyses.
[16]
a) J. Baschuk, X. Li, Int. J. Energy Res. 2001, 25, 695-713; b) J.
Baschuk, X. Li, Int. J. Energy Res 2003, 27, 1095-1116; c) F. J. Scott,
C. Roth, D. E. Ramaker, J. Phys. Chem. C. 2007, 111, 11403-11413; d)
D. Wang, C. V. Subban, H. Wang, E. Rus, F. J. Disalvo, H. D. Abruña,
J. Am. Chem. Soc. 2010, 132, 10218-10220.
[17] M. Iglesias, L. A. Oro, Eur. J. Inorg. Chem. 2018, 2125-2138.
[18] a) S. Oldendorf, M. Lutz, B. de Bruin, J. I. van der Vlugt, J. N. H. Reek,
Chem. Sci. 2015, 6, 1027-1034; b) J. Li, J. Li, D. Zhang, , C. Liu, ACS
Catal. 2016, 6, 4746-4754.
Keywords: Formic acid • Hydrogen • Energy • Iridium •
Dipyridylamine
[19] A. Matsunami, Y. Kayaki, T. Ikariya, Chem. Eur. J. 2015, 21, 13513-
13517.
[1]
a) N. Onishi, G. Laurenczy, M. Beller, Y. Himeda, Coord. Chem. Rev.
W-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman,
E. Fujita, Nature Chem. 2012, 4, 383-388.
[2]
[3]
A. Kumar Singh, S. Singh, A. Kumar, Catal. Sci. Technol. 2016, 6, 12-
40.
a) D. Mellmann, P. Sponholz, H. Junge, M. Beller, Chem. Soc. Rev.
2016, 45, 3954-3988; b) K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P.
J. Dyson, M. Beller, G. Laurenczy, Chem. Rev. 2018, 118, 372-433.
a) R. S. Coffey, Chem. Commun. 1967, 923-924; b) D. Forster, G. R.
Beck, Chem. Commun. 1971, 1072.
[4]
[5]
a) B. Loges, A. Boddien, H. Junge, M. Beller, Angew. Chem. Int. Ed.
2008, 47, 3962-3965; b) C. Fellay, P. J. Dyson, G. Laurenczy, Angew.
Chem. Int. Ed. 2008, 47, 3966-3968.
[6]
a) Y. Himeda, Green Chem. 2009, 11, 2018-2022; b) A. Boddien, D.
Mellmann, F. Gartner, R. Jackstell, H. Junge, P. J. Dyson, G.
Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733-1736; c) E.
A. Bielinski, P. O. Lagaditis, Y. Zhang, B. Q. Mercado, C. Würtele, W. H.
Bernskoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136,
10234-10237; d) Y. Manaka, W.-H. Wang, Y. Suna, H. Kambayashi, J.
T. Muckerman, E. Fujita, Y. Himeda, Catal. Sci. Technol. 2014, 4, 34-
37; e) M. Vogt, A. Nerush, Y. Diskin-Posner, Y. Ben-David, D. Milstein,
Chem. Sci. 2014, 5, 2043–2051; f) M. C. Neary, G. Parkin, Chem. Sci.
2015, 6, 1859–1865; g) Z. Wang, S.-M. Lu, J. Li, J. Wang, C. Li,
Chem.Eur. J. 2015, 21, 12592-12595; h) F. Bertini, I. Mellone, A. Ienco,
M. Peruzzini, L. Gonsalvi, ACS Catal. 2015, 5, 1254-1265; i) M. Iguchi,
Y. Himeda, Y. Manaka, H. Kawanami, ChemSusChem 2016, 9, 2749–
2753; j) D. Jantke, L. Pardatscher, M. Drees, M. Cokoja, W. A.
Herrmann, F. E. Kühn, ChemSusChem 2016, 9, 2849-2854; k) M. C.
Neary, G. Parkin, Dalton Trans. 2016, 45, 14645-14650; l) M.
Montandon-Clerc, A. F. Dalebrook, G. Laurenczy, J. Catal. 2016, 343,
62-67; m) L. S. Jongbloed, B. de Bruin, J. N. H. Reek, M. Lutz, J. I. van
der Vlugt, Catal. Sci. Technol. 2016, 6, 1320-1327; n) C. Fink, G.
Laurenczy, Dalton Trans. 2017, 46, 1670–1676; o) S.-M. Lu, Z. Wang,
J. Wang, J. Li, C. Li, Green Chem. 2018, 20, 1835-1840. p) N. Onishi,
M. Z. Ertem, S. Xu, A. Tsurusaki, Y. Manaka, J. T. Muckerman, E.
Fujita,Y. Himeda, Catal. Sci. Technol. 2016, 6, 988-992.
[7]
[8]
[9]
J. H. Barnard, C. Wang, N. G. Berry, J. Xiao, Chem. Sci. 2013, 4, 1234-
1244
J. J. A. Celaje, Z. Lu, E. A. Kedzie, N. J. Terrile, J. N. Lo, T. J. Williams,
Nat. Comm. 2016, 7, 11308.
S. Oldenhof, B. de Bruin, M. Lutz, M. A. Siegler, F. W. Patureau, J. I.
van der Vlugt, J. N. H. Reek, Chem. Eur. J. 2013, 19, 11507-11511.
[10] S. Wang, V. Dorcet, T. Roisnel, C. Bruneau, C. Fischmeister,
Organometallics 2017, 36, 708-713
[11] C. Romain, S. Gaillard, M. K. Elmkaddem, L. Toupet, C. Fischmeister,
C. M. Thomas, J.-L. Renaud, Organometallics, 2010, 29, 1992-1995.
[12] S. Wang, H. Huang, V. Dorcet, T. Roisnel, C. Bruneau, C. Fischmeister,
Organometallics 2017, 36, 3152-3162.
[13] a) G. Menendez Rodriguez, C. Domestici, A. Bucci, M. Valentini, C.
Zuccaccia, A. Macchioni, Eur. J. Inorg. Chem. 2018, 2247-2250; b) W.
This article is protected by copyright. All rights reserved.