Organometallics
Article
̈
Sakamoto, T.; El-Khateeb, M.; Weigand, W. Diiron Dichalcogenolato
(Se and Te) Complexes: Models for the Active Site of [FeFe]
Hydrogenase. Eur. J. Inorg. Chem. 2011, 2011, 986−993.
(34) Harb, M. K.; Niksch, T.; Windhager, J.; Gorls, H.; Holze, R.;
Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.;
Lichtenberger, D. L.; El-Khateeb, M.; Weigand, W. Synthesis and
Characterization of Diiron Diselenolato Complexes Including Iron
Hydrogenase Models. Organometallics 2009, 28, 1039−1048.
(20) Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R. Unsaturated,
Mixed-Valence Diiron Dithiolate Model for the Hox State of the
[FeFe] Hydrogenase. Angew. Chem., Int. Ed. 2007, 46, 6152−6153.
̈
(35) Apfel, U.-P.; Halpin, Y.; Gottschaldt, M.; Gorls, H.; Vos, J. G.;
̈
Weigand, W. Functionalized Sugars as Ligands towards Water-Soluble
[Fe-only] Hydrogenase Models. Eur. J. Inorg. Chem. 2008, 2008,
5112−5118.
(21) Lunsford, A. M.; Beto, C. C.; Ding, S.; Erdem, O. F.; Wang, N.;
Bhuvanesh, N.; Hall, M. B.; Darensbourg, M. Y. Cyanide-bridged iron
complexes as biomimetics of tri-iron arrangements in maturases of the
H cluster of the di-iron hydrogenase. Chem. Sci. 2016, 7, 3710−3719.
(22) Razavet, M.; Davies, S. C.; Hughes, D. L.; Barclay, J. E.; Evans,
D. J.; Fairhurst, S. A.; Liu, X.; Pickett, C. J. All-iron hydrogenase:
synthesis, structure and properties of {2Fe3S}-assemblies related to
the di-iron sub-site of the H-cluster. Dalton Trans. 2003, 586−595.
(23) Capon, J.-F.; El Hassnaoui, S.; Gloaguen, F.; Schollhammer, P.;
Talarmin, J. N-Heterocyclic Carbene Ligands as Cyanide Mimics in
Diiron Models of the All-Iron Hydrogenase Active Site. Organo-
metallics 2005, 24, 2020−2022.
(24) Liu, T.; Darensbourg, M. Y. A Mixed-Valent, Fe(II)Fe(I),
Diiron Complex Reproduces the Unique Rotated State of the
[FeFe]Hydrogenase Active Site. J. Am. Chem. Soc. 2007, 129, 7008−
7009.
(25) Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.;
Richards, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of
the iron-only hydrogenase: a comparison of chelate and bridge
isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction
catalysts. Dalton Trans. 2013, 42, 6775−6792.
(26) Heinekey, D. M. Hydrogenase enzymes: Recent structural
studies and active site models. J. Organomet. Chem. 2009, 694, 2671−
2680.
(27) Kluwer, A. M.; Kapre, R.; Hartl, F.; Lutz, M.; Spek, A. L.;
Brouwer, A. M.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Self-
assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for
molecular hydrogen evolution. Proc. Natl. Acad. Sci. U. S. A. 2009,
106, 10460−10465.
(28) Song, L.-C.; Yang, Z.-Y.; Bian, H.-Z.; Liu, Y.; Wang, H.-T.; Liu,
X.-F.; Hu, Q.-M. Diiron Oxadithiolate Type Models for the Active
Site of Iron-Only Hydrogenases and Biomimetic Hydrogen Evolution
Catalyzed by Fe2(μ-SCH2OCH2S-μ)(CO)6. Organometallics 2005,
24, 6126−6135.
(29) Song, L.-C.; Tang, M.-Y.; Su, F.-H.; Hu, Q.-M. A Biomimetic
Model for the Active Site of Iron-Only Hydrogenases Covalently
Bonded to a Porphyrin Photosensitizer. Angew. Chem., Int. Ed. 2006,
45, 1130−1133.
(30) Song, L.-C.; Wang, Y.-X.; Xing, X.-K.; Ding, S.-D.; Zhang, L.-
D.; Wang, X.-Y.; Zhang, H.-T. Hydrophilic Quaternary Ammonium-
Group-Containing [FeFe]-Hydrogenase Models: Synthesis, Struc-
tures, and Electrocatalytic Hydrogen Production. Chem. - Eur. J. 2016,
22, 16304−16314.
(36) Harb, M. K.; Apfel, U.-P.; Kubel, J.; Gorls, H.; Felton, G. A. N.;
̈
̈
Sakamoto, T.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-
Khateeb, M.; Weigand, W. Preparation and Characterization of
Homologous Diiron Dithiolato, Diselenato, and Ditellurato Com-
plexes: [FeFe]-Hydrogenase Models. Organometallics 2009, 28,
6666−6675.
(37) Song, L.-C.; Li, Q.-L.; Feng, Z.-H.; Sun, X.-J.; Xie, Z.-J.; Song,
H.-B. Synthesis, characterization, and electrochemical properties of
diiron propaneditellurolate (PDTe) complexes as active site models of
[FeFe]-hydrogenases. Dalton Trans. 2013, 42, 1612−1626.
̈
(38) Herrmann, W. A.; Schutz, J.; Frey, G. D.; Herdtweck, E. N-
Heterocyclic Carbenes: Synthesis, Structures, and Electronic Ligand
Properties. Organometallics 2006, 25, 2437−2448.
(39) Mercs, L.; Labat, G.; Neels, A.; Ehlers, A.; Albrecht, M. Piano-
Stool Iron(II) Complexes as Probes for the Bonding of N-
Heterocyclic Carbenes: Indications for π-Acceptor Ability. Organo-
metallics 2006, 25, 5648−5656.
(40) Viciano, M.; Mas-Marza, E.; Sanau, M.; Peris, E. Synthesis and
Reactivity of New Complexes of Rhodium and Iridium with
Bis(dichloroimidazolylidene) Ligands. Electronic and Catalytic
Implications of the Introduction of the Chloro Substituents in the
NHC Rings. Organometallics 2006, 25, 3063−3069.
(41) Arduengo, A. J., III; Dias, H. V. R.; Harlow, R. L.; Kline, M.
Electronic Stabilization of Nucleophilic Carbenes. J. Am. Chem. Soc.
1992, 114, 5530−5534.
(42) Buchgraber, P.; Toupet, L.; Guerchais, V. Syntheses, Properties,
and X-ray Crystal Structures of Piano-Stool Iron Complexes Bearing
an N-Heterocyclic Carbene Ligand. Organometallics 2003, 22, 5144−
5147.
(43) Takikawa, Y.; Koyama, Y.; Yoshida, T.; Makino, K.; Shibuya,
H.; Sato, K.; Otsuka, T.; Shibata, Y.; Onuma, Y.; Aoyagi, S.; Shimada,
K.; Kabuto, C. Synthesis and Oxidative Ring Contraction of 1,5,3,7-
Dichalcogenadiazocanes. Novel Formation of 1,2,4-Diselenazolidines,
1,2,4-Ditellurazolidines, and 1,2,3,4,5,7-Pentathiazocanes. Bull. Chem.
Soc. Jpn. 2006, 79, 1913−1925.
(44) Seyferth, D.; Womack, G. B.; Song, L.-C.; Cowie, M.; Hames,
B. W. Unexpected Intramolecular Nucleophilic Substitution in an
Anionic Fe2(CO)6 Complex with an Organosulfur Ligand. A Novel
Preparation of Fe2(CO)6 Complexes of Dithioformic Acid Esters.
Organometallics 1983, 2, 928−930.
(45) Song, L.-C.; Mei, S.-Z.; Feng, C.-P.; Gong, F.-H.; Ge, J.-H.; Hu,
Q.-M. Reactions of Monoanions [(μ-RE)(μ-E)Fe2(CO)6]− and
Dianions [(μ-E)2Fe2(CO)6]2− (E = Se, S) with N-Substituted
Benzimidoyl Chlorides, Leading to Novel Butterfly Fe/E Cluster
Complexes. Organometallics 2010, 29, 5050−5056.
(46) Song, L.-C.; Yan, C.-G.; Hu, Q.-M.; Wang, R.-J.; Mak, T. C. W.;
Huang, X.-Y. Formation of (μ-RE)(μ-S−)Fe2(CO)6 and (μ-RE)(μ-
Se−)Fe2(CO)6 (E = S, Se) Anions and a Comparative Study of Their
Reactions with SO2Cl2ClC(O)ZC(O)Cl (Z = (CH2)2C6H4), or p-
MeC6H4SO2Cl. Single-Crystal Structures of [(μ-EtS)Fe2(CO)6]2(μ4-
Se) and (μ-EtS)(μ-p-MeC6H4SO2)Fe2(CO)6. Organometallics 1996,
15, 1535−1544.
(47) Collman, J. P.; Hegedus, L. S. Principles and Applications of
Organotransition Metal Chemistry; University Science Books: Mill
Valley, CA, 1980; pp 54−88.
(48) Bard, A. J.; Faulkner, L. R. Electrochemical Methods:
Fundamentals and Applications, 2nd ed.; John Wiley & Sons:
Hoboken, NJ, 2001.
́
́
(31) (a) Song, L.-C.; Gao, W.; Feng, C.-P.; Wang, D.-F.; Hu, Q.-M.
Investigations on Synthesis, Structure, and Properties of New
Butterfly [2Fe2Se] Cluster Complexes Relevant to Active Sites of
Some Hydrogenases. Organometallics 2009, 28, 6121−6130.
(b) Song, L.-C.; Gai, B.; Feng, Z.-H.; Du, Z.-Q.; Xie, Z.-J.; Sun, X.-
J.; Song, H.-B. Synthesis, Structures, and Some Properties of Diiron
Oxadiselenolate (ODSe) and Thiodiselenolate (TDSe) Complexes as
Models for the Active Site of [FeFe]-Hydrogenases. Organometallics
2013, 32, 3673−3684.
(32) Kertess, L.; Wittkamp, F.; Sommer, C.; Esselborn, J.; Rudiger,
̈
O.; Reijerse, E. J.; Hofmann, E.; Lubitz, W.; Winkler, M.; Happe, T.;
Apfel, U.-P. Chalcogenide substitution in the [2Fe] cluster of [FeFe]-
hydrogenases conserves high enzymatic activity. Dalton Trans. 2017,
46, 16947−16958.
(33) Gao, W.; Song, L.-C.; Yin, B.-S.; Zan, H.-N.; Wang, D.-F.; Song,
H.-B. Synthesis and Characterization of Single, Double, and Triple
Butterfly [2Fe2E] (E = Se, S) Cluster Complexes Related to the
Active Site of [FeFe]-Hydrogenases. Organometallics 2011, 30, 4097−
4107.
(49) Abul-Futouh, H.; Skabeev, A.; Botteri, D.; Zagranyarski, Y.;
Gorls, H.; Weigand, W.; Peneva, K. Toward a Tunable Synthetic
̈
M
Organometallics XXXX, XXX, XXX−XXX