PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS
7
[16] Agrawal, S.; Rayapudi, V.; Dhawan, N. Comparison of
Microwave and Conventional Carbothermal Reduction of Red
Mud for Recovery of Iron Values. Miner. Eng. 2019, 132,
ORCID
Zhengjie Chen
http://orcid.org/0000-0002-1519-275X
[17] Lombardo, G.; Ebin, B.; St Foreman, M. R. J.; Steenari, B.-M.;
Petranikova, M. Chemical Transformations in Li-Ion Battery
Electrode Materials by Carbothermic Reduction. ACS Sustain
[18] Chen, Z. M. Study on Barite Reduction Roasting in Barium Salt
Production. Inorg. Chem. Ind. 1982, 1, 2–7. DOI: CNKI: SUN:
WJYG.0.1982-12-000.
References
[1] Mohamed, M. S.; Mohamed, M.; Sabbah, A. Microstructure and
Mechanical Properties of Hot Extruded 6016 Aluminum Alloy/
Graphite Composites. J. Mater. Sci. Technol. 2018, 34,
[2] Mikio, F.; Tomoyuki, K.; Fumihiko, H.; Toshiyuki, H.; Eunsang,
K.; Kazuya, K. Amorphous Aluminum-Oxide Supercapacitors.
[19] Salem, A.; Osgouei, Y. T. The Effect Particle Size Distribution
on Barite Reduction. Mater. Res. Bull. 2009, 44, 1489–1493.
[3] Pokoev, A. V.; Osinskaya, J. V.; Shakhbanova, S. G.;
Yamtshikova, K. S. The Magnetoplastic Effect in Aluminum
Alloys. Bull. Russ. Acad. Sci. Phys. 2018, 82, 870–873. DOI: 10.
[4] Zhang, S. Q.; Zhang, Y. C.; Chen, M.; Wang, Y. J.; Cui, Q.;
Wu, R.; Arola, D.; Zhang, D. S. Characterization of Mechanical
Properties of Aluminum Cast Alloy at Elevated Temperature.
Appl. Math. Mech-Engl. Ed. 2018, 39, 967–980. DOI: 10.1007/
[5] Bishara, H.; Berger, S. Piezoelectric Ultra-Sensitive Aluminum
Nitride Thin Film on Flexible Aluminum Substrate. J. Mater.
[6] Xu, G. D.; Ao, H.; She, Y. G. Current Status and Development
Trend of Aluminum Industry in World and Strategy
Suggestions in China under Background of Sustainable
Development. Chin. J. Non. Metal. 2012, 22, 2040–2051. DOI:
DOI: CNKI: SUN: ZYXZ.0.2012-07-026.
[7] Song, Y. B.; Li, L.; Lv, J. M.; Yan, A.; Zhou, D. J. Research
Status and Perspective of 7xxx Series Aluminum Alloys
Welding. Chin. J. Non. Metal. 2018, 28, 492–501.
[8] Sasikumar, S.; Georgy, K.; Mukherjee, M.; Vinod Kumar, G. S.
Foam Stabilization by Aluminum Powder. Mater. Lett. 2020,
[9] Clark, B. D.; Jacobson, C. R.; Lou, M. H.; Yang, J.; Zhou, L. N.;
Gottheim, S.; DeSantis, C. J.; Nordlander, P.; Halas, N. J.
Aluminum Nanorods. Nano Lett. 2018, 18, 1234–1240. DOI:
[10] Zhu, H. Y.; Gao, R.; Jin, W. T.; Qiu, L. W.; Xue, Z. L.
Reduction Characteristics of Molybdenum Trioxide with
Aluminum and Silicon. Rare Met. 2018, 37, 621–624. DOI: 10.
[11] Jin, H. Y.; Nie, S. C.; Li, Z. W.; Tong, C.; Wang, K. J.
Investigation on Preparation and Anti-Icing Performance of
Superhydrophobic Surface on Aluminum Conductor. Chin. J.
[12] Xu, Q.; Liu, L.; Feng, J. X.; Qiao, L. H.; Yu, C. Q.; Shi, W. J.;
Ding, C.; Zang, Y.; Chang, C.; Xiong, Y. X.; Ding, Y. L. A
Comparative Investigation on the Effect of Different Nanofluids
on the Thermal Performance of Two-Phase Closed
Thermosyphon. Int. J. Heat Mass Transfer 2020, 149, 119–189.
[13] Xu, Q.; Zou, Z. W.; Chen, Y. S.; Wang, K.; Du, Z. W.; Feng, J. X.;
Ding, C.; Bai, Z. Q.; Zang, Y.; Xiong, Y. X. Performance of a Novel-
Type of Heat Flue in a Coke Oven Based on High-Temperature
and Low-Oxygen Diffusion Combustion Technology. Fuel 2020,
[14] Yu, D.; Paktunc, D. Carbothermic Reduction of Chromite Fluxed
with Aluminum Spent Potlining. Trans. Nonferrous Met. Soc.
[15] Zhang, G. H.; Gou, H. P.; Wu, K. H.; Chou, K. C.
Carbothermic Reduction of Panzhihua Ilmenite in Vacuum.
[20] Liu, J.; Liu, J. H.; Wu, B. W.; Shen, S. B.; Yuan, G. H.; Peng,
L. Z. Study on Carbothermal Reduction Process of Manganese
Ore in Microwave Field. J. Hunan Univ. 2017, 44, 89–96.
[21] Hlabela, P. S.; Neomagus, H. W. J. P.; Waanders, F. B.;
Bruinsma, O. S. L. Thermal Reduction of Barium Sulphate with
Carbon Monoxide – A Thermogravimetric Study. Thermochim.
[22] Jagtap, S. B.; Pande, A. R.; Gokarn, A. N. Effect of Catalysts on
the Kinetics of the Reduction of Barite by Carbon. Nordisk
[23] Luo, S. H.; Hu, D. B.; Liu, H.; Li, J. Z.; Yi, T. F. Hydrothermal
Synthesis and Characterization of a-Fe2O3/C Using Acid-
Pickled Iron Oxide Red for Li-Ion Batteries. J. Hazard. Mater.
[24] Luo, S. H.; Sun, Y.; Bao, S.; Li, J.; Zhang, J.; Yi, T. F. Synthesis
of Er-Doped LiMnPO4/C by
a Sol-Assisted Hydrothermal
Process with Superior Rate Capability. J. Electroanal. Chem.
[25] Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, X.; Liu,
Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; He, C. N.; et al.
Constructing N-Doped Porous Carbon Confined FeSb Alloy
Nanocomposite with Fe-N-C Coordination as
a Universal
Anode for Advanced Na/K-Ion Batteries. Chem. Eng. J. 2020,
[26] Yu, S. Z.; Luo, S. H.; Zhan, Y.; Huang, H. B.; Wang, Q.; Zhang,
Y. H.; Liu, Y. G.; Hao, A. M. Metal-Organic Framework-Derived
Cobalt Nanoparticle Space Confined in Nitrogen-Doped Carbon
Polyhedra Networks as High-Performance Bifunctional
Electrocatalyst for Rechargeable Li–O2 Batteries. J. Power Sour.
[27] Liu, H.; Luo, S. H.; Yan, S. X.; Wang, Q.; Hu, D. B.; Wang,
Y. L.; Feng, J.; Yi, T. F. High-Performance a-Fe2O3/C
Composite Anodes for Lithium-Ion Batteries Synthesized by
Hydrothermal Carbonization Glucose Method Used Pickled
Iron Oxide Red as Raw Material. Compos. Part B: Eng. 2019,
[28] Dat, N. D.; Huang, Y. J.; Chang, M. B. Characterization of PCN
Emission and Removal from Secondary Copper Metallurgical
processes. Environ. Pollut. 2019, 258, 113759. DOI: 10.1016/j.
[29] Avgustina, B.; Il’dar, I.; Alexander, L.; Andrey, P. Identification of
Amorphous and Crystalline Phases in Alumina Entity and Their
Contribution to the Properties of the Palladium Catalyst. Appl.
[30] Yin, C.; Negreiros, F. R.; Barcaro, G.; Beniya, A.; Sementa, L.;
Tyo, E. C.; Bartling, S.; Meiwes-Broer, K.-H.; Seifert, S.; Hirata,
H.; et al. Alumina-Supported Sub-Nanometer Pt-10 Clusters:
Amorphization and Role of the Support Material in a Highly
Active CO Oxidation Catalyst. J. Mater. Chem. A 2017, 5,
[31] Rodiansono; Astuti, M. D.; Mujiyanti, D. R.; Santoso, U. T.;
Shimazu, S. Novel Preparation Method of Bimetallic Ni-in
Alloy Catalysts Supported on Amorphous Alumina for the
Highly Selective. Mol. Catal. 2018, 445, 52–60. DOI: 10.1016/j.