chemoselectivity of this unusual coupling reaction is based
on the preferential formation of oxyl spin centers on BDD
electrodes (Figure 1).22
Guaiacol derivatives occur abundantly in nature. Many
plants, e.g. the guaiac tree, contain these phenolic compounds
such as vanillin, syringic aldehyde, eugenol, or syringol (6) in
significant amounts. The biopolymer lignin represents the
largest renewable source for aromatic compounds and pro-
vides these guaiacol derivatives in huge quantities upon
oxidative treatment.23 They represent the future feedstock
for a sustainable arene chemistry. Consequently, the chem-
istry of these phenols will be of particular interest for future
applications.
Figure 1. Mode of action for BDD anodes in aqueous or
alcoholic media.
outstanding ecological and economical attractiveness
since only electrons are employed as reagents. Conse-
quently, reagent waste is avoided.14 Oxidative synthesis of
biphenols often results in the formation of the homocou-
pling product.15 Recently, we found that the boron-doped
diamond (BDD) as a very appealing innovative electrode
material which can be used for the conversion of a broad
scope of phenolic substrates to symmetrical biphenols.16,17
The addition of fluorinated alcohols significantly reduces
the oxidative degradation of the substrates and products.
Furthermore, the additive allows the conversion of solid
substrates18 and suppresses the formation of complex
molecular architectures.19 The best results were obtained
with 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as an ad-
ditive. This created the basis for the first anodic phenol-
arene cross-coupling reaction and gave an indication for
the electrochemical generation of nonsymmetrical biphe-
nol coupling products.20,21
Table 1. Electrochemical Oxidation of Guaiacol Derivatives on
BDDa
yield (%) of biphenols
guaiacol derivative
entry
R =
2
3
1b
2
CH3 (1a)
33% (2a)
21% (2b)
5% (2c)
ꢀ
ꢀ
ꢀ
C3H7 (1b)
CH(CH3)2 (1c)
C(CH3)3 (1d)
Cl (1e)
3
5% (3c)
4
18% (3d)
5
4% (2e)
8% (2f)
ꢀ
6
Br (1f)
ꢀ
a Electrolysis conditions: constant current; undivided cell; BDD
anode on silicon; nickel net cathode; j = 4.7 mA/cm2; 1 F per mol
phenol (1930 C); 0.02 mol of phenol; 30 mL of HFIP; 0.7 g of
[MeNEt3]O3SOCH3; 50 °C. b This entry is taken from ref 16.
A direct oxidation of guaiacol derivatives by transition
metal ions with a high oxidation potential, such as Mn7þ or
Fe3þ, leads to the formation of corresponding ortho-ortho-
coupled biphenols. The naturally occurring dehydrodieu-
genol is available in this way.24,25 By serendipity we found
that 4-methylguaiacol (1a) gave the ortho-meta coupled 2a
upon anodic treatment on boron-doped diamond electro-
des and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as sol-
vent. This nonsymmetrical biphenol 2a was formed
exclusively (Table 1, entry 1). Since the remaining starting
material was recovered by short-path distillation the sub-
sequent workup was easy. Although the yield is moderate,
fast access without requiring prior installation of leaving
functionalities on the respective positions made this ap-
proach interesting.20,26 Therefore, we studied the scope
of the BDD/HFIP protocol in more detail. A variety of
differently substituted guaiacol derivatives was sub-
jected to this electrochemical oxidation.
Here, we report the direct anodic dehydrodimerization
to nonsymmetrical biphenols using BDD electrodes. The
(13) Dohi, T.; Ito, M.; Morimoto, K.; Wata, M.; Kita, Y. Angew.
Chem., Int. Ed. 2008, 47, 1301–1304.
(14) (a) Steckhan, E.;Arns, T.;Heineman, W. R.;Hilt, G.; Hoormann,
€
D.; Jorissen, J.; Kroner, L.; Lewall, B.; Putter, H. Chemosphere 2001, 43,
63–73. (b) Yoshida, J.-i.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem.
€
Rev. 2008, 108, 2265–2299. (c) Schafer, H. J., Bard, A. J., Stratmann, M.,
Eds. Organic electrochemistry: Encyclopedia of electrochemistry, Vol. 8;
Wiley-VCH: Weinheim, 2004. (d) Lund, H.; Hammerich, O., Eds. Organic
electrochemistry, 4th ed.; Marcel Dekker: New York, 2001.
(15) Lessene, G.; Feldman, K. S. In Modern arene chemistry. Con-
cepts, synthesis, and applications; Astruc, D., Ed.; Wiley-VCH: Weinheim,
2002; pp 479ꢀ538.
(16) Kirste, A.; Nieger, M.; Malkowsky, I. M.; Stecker, F.; Fischer,
A.; Waldvogel, S. R. Chem.;Eur. J. 2009, 15, 2273–2277.
(17) Kirste, A.; Fischer, A.; Malkowsky, I. M.; Stecker, F.; Waldvogel,
S. R. WO 2010 023258 A1.
€
(18) Malkowsky, I. M.; Griesbach, U.; Putter, H.; Waldvogel, S. R.
Eur. J. Org. Chem. 2006, 4569–4572.
(19) (a) Malkowsky, I. M.; Rommel, C. E.; Wedeking, K.; Frohlich,
€
R.; Bergander, K.; Nieger, M.; Quaiser, C.; Griesbach, U.; Putter, H.;
Depending on the steric demand of the substituent in
position 4 of phenol 1 either a symmetrical or nonsymme-
trical biphenol was obtained (Scheme 1, Table 1). An
elongation of an alkyl chain from 4-methyl to 4-propyl
Waldvogel, S. R. Eur. J. Org. Chem. 2006, 241–245. (b) Barjau, J.;
Koenigs, P.; Kataeva, O.; Waldvogel, S. R. Synlett 2008, 2309–2312.
(c) Barjau, J.; Schnakenburg, G.; Waldvogel, S. R. Angew. Chem., Int.
Ed. 2011, 50, 1415–1419.
(20) Kirste, A.; Schnakenburg, G.; Stecker, F.; Fischer, A.; Waldvogel,
S. R. Angew. Chem., Int. Ed. 2010, 49, 971–975.
(23) Lin, S. Y.; Dence, C. W. Methods in lignin chemistry; Springer:
Berlin, 1992.
(21) Kirste, A.;Fischer, A.; Malkowsky, I. M.; Stecker, F.; Waldvogel,
S. R. WO 2010 139687 A1, 2010.
(24) Ogata, M.; Sato, K. T.; Kunikane, T.; Oka, K.; Seki, M.; Urano,
S.; Hiramatsu, K.; Endo, T. Biol. Pharm. Bull. 2005, 28, 1120–1122.
(25) Marques, F. A.; Simonelli, F.; Oliveira, A. R.; Gohr, G. L.; Leal,
P. C. Tetrahedron Lett. 1998, 39, 943–946.
(22) Waldvogel, S. R.; Mentizi, S.; Kirste, A. Use of diamond films in
organic electrosynthesis. In Synthetic Diamond Films - Preparation,
Electrochemistry, Cararterization and Applications; Brillas, E., Martínez-
Huitle, C. A., Eds.; Wiley-VCH: 2011; pp 483ꢀ510.
Org. Lett., Vol. 13, No. 12, 2011
3127