Lan et al.
SCHEME 1. PdII Catalyzed Pauson-Khand-Type Reaction
SCHEME 2. Two Possible Competitive Mechanisms of
Palladium Catalyzed 1,6-Enyne PKR
reaction is most commonly catalyzed by Co,4 the use of several
other transition metals such as Ti,5 Zr,5b,6 Ni7, Mo,8 Ru,9 Rh,9d,10
and Ir11 in Pauson-Khand-like reactions (for convenience it is
still referred to as PKR hereafter) has been described. Recently,
one of us found that PdCl2 coordinated to a thiourea ligand could
also catalyze an intramolecular PKR, as shown in Scheme 1.12
With reaction temperatures of 50 °C and balloon pressure carbon
monoxide, the reaction conditions are very mild. Several
interesting features of the novel reaction were observed,12
namely that; (a) the reaction could be catalyzed by PdCl2 alone,
but the yield is low; (b) addition of thiourea, especially
tetramethyl thiourea (tmtu) greatly increases the reaction yield;
(c) the presence of chloride is essential, and the reaction could
not be catalyzed by Pd(OAc)2 or Pd(dba)2; (d) added Lewis
acids such as LiCl can increase the reaction rate and ultimately
the yield; (e) the stereochemistry of PdCl2 catalyzed PKR is
different with other metal-catalyzed PKR in that substituted
substrates selectively form the trans diastereomer, thus providing
access to different stereoisomers. These observations are intrigu-
ing and cannot be explained by the widely accepted mechanism
of the PKR, but an explanation of the experimental findings is
not obvious. We therefore decided to pursue a detailed
computational study of the reaction mechanism.
14
somerizations where the catalyst is Pd2(dba)3 or palladacy-
clopentadiene15 are reported to occur via this route. After the
oxidative cyclization, which is thought to be the rate-determining
step, CO inserts to the Pd-C bond. After the reductive
elimination, cyclopentenone is formed. This pathway is in
analogy to the catalytic cycle proposed by Magnus et al.13 for
the Co2(CO)8 catalyzed PKR16,17 that forms the basis for the
proposed mechanisms of almost all the transition metal-catalyzed
PKRs. However, this pathway does not explain the current
experimental observations that are described above. Specifically,
it does not explain the essential role of the chloride anion,
observed stereochemistry, and the acceleration of the reaction
by added LiCl.12
In the alternative pathway B, the reaction is initiated by a
cis-addition of palladium and chloride to the alkyne in a
regioselective fashion where the chloride is transferred to the
terminal position of alkyne. This initiation step has been shown
In principle, the palladium catalyzed 1,n-enyne cycloisomer-
ization can proceed via two possible pathways shown in Scheme
2.13 In the first one (pathway A), a palladacyclopentene is
formed via an oxidative cyclization. Some 1,n-enyne cycloi-
18
19
to be also possible for the cases of PdII or hydrogenated Pd0
catalyzed cycloisomerizations. After insertions of alkene and
CO, Pd is oxidatively inserted into the vinyl-chloride bond,
leading to the formation of the same intermediate as in pathway
A. In both cases, the cyclopentenone product is formed after
the reductive elimination and closing of the catalytic cycle.
Although Pathway B appears reasonable and in agreement
with the experimental observations, as will be discussed in more
detail below, there is to the best of our knowledge no precedence
for such a mechanism. Here, we present a study of the two
pathways shown in Scheme 2. Starting from Nakamura’s work16
for the Co-catalyzed PKR, we investigated the cyclizations of
1-allyloxy-2-butyne as a typical 1,6-enyne by Pd(Cl)2 and
tetramethyl thiourea (tmtu) as the ligand to model the Pd-
catalyzed PKR. We will start by investigating the energetics
(4) (a) Muller, J. L.; Rickers, A.; Leitner, W. AdV. Synth. Catal. 2007, 349,
287. (b) Gibson, S. E.; Stevenazzi, A. Angew. Chem., Int. Ed. 2003, 42, 1800.
(c) Fletcher, A. J.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2000, 1657.
(5) (a) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc.
1996, 118, 9450; 1994, 116, 8593. (b) Hicks, F. A.; Berk, S. C.; Buchwald,
S. L. J. Org. Chem. 1996, 61, 2713. (c) Hicks, F. A.; Buchwald, S. L. J. Am.
Chem. Soc. 1996, 118, 11688. (d) Hicks, F. A.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 7026. (e) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am.
Chem. Soc. 1999, 121, 5881. (f) Zhao, Z. B.; Ding, Y.; Zhao, G. J. Org. Chem.
1998, 63, 9285.
(6) (a) Negishi, E.-I.; Holmes, S. J.; Tour, J. M.; Miller, J. A. J. Am. Chem.
Soc. 1985, 107, 1568. (b) Agnel, G.; Negishi, E.-I. J. Am. Chem. Soc. 1991,
113, 7424.
(7) (a) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 1286.
(b) Zhang, M.; Buchwald, S. L. J. Org. Chem. 1996, 61, 4498.
(8) (a) Mukai, C.; Uchiyama, M.; Hanaoka, M. J. Chem. Soc. Chem. Commun.
1992, 1014. (b) Jeong, N.; Lee, S. L.; Lee, B. Y.; Chung, Y. K. Tetrahedron
Lett. 1993, 34, 4027. (c) Kent, J. L.; Wan, H. H.; Brummond, K. M. Tetrahedron
Lett. 1995, 36, 2407. (d) Adrio, J.; Rivero, M. R.; Carretero, J. C. Org. Lett.
2005, 7, 431. (e) Adrio, J.; Carretero, J. C. J. Am. Chem. Soc. 2007, 129, 778.
(9) (a) Morimoto, T.; Chatani, N.; Fukumoro, Y.; Murai, S. J. Org. Chem.
1997, 62, 3762. (b) Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T. J. Am. Chem.
Soc. 1997, 119, 6187. (c) Koga, Y.; Kobayashi, T.; Narasaka, K. Chem. Lett.
1998, 249. (d) Kobayashi, T.; Koga, Y.; Narasaka, K. J. Organomet. Chem.
2001, 624, 73. (e) Kondo, T.; Nomura, M.; Ura, Y.; Wada, K.; Mitsudo, T.-A.
J. Am. Chem. Soc. 2006, 128, 14816.
(14) (a) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116,
4268. (b) Yamamoto, Y.; Nagata, A.; Itoh, K. Tetrahedron Lett. 1999, 40, 5035.
(15) (a) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636. (b)
Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (c) Trost, B. M.; Stephen, A.; Hashmi,
K. J. Am. Chem. Soc. 1994, 116, 2183. (d) Trost, B. M.; Yanai, M.; Hoogsteen,
K. J. Am. Chem. Soc. 1993, 115, 5294.
(10) (a) Koga, Y.; Kobayashi, T.; Narasaka, K. Chem. Lett. 1998, 249. (b)
Jeong, N.; Lee, S.; Sung, B. K. Organometallics 1998, 17, 3642. (c) Jeong, N.;
Sung, B. K.; Choi, Y. K. J. Am. Chem. Soc. 2000, 122, 6771. (d) Fan, B. M.;
Xie, J. H.; Li, S.; Tu, Y. Q.; Zhou, Q. L. AdV. Syn. Cat. 2005, 347, 759.
(11) (a) Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852. (b)
Shibata, T.; Toshida, N.; Yamazaki, M.; Maekawa, S.; Takagi, K. Tetrahedron
2005, 61, 9974.
(12) (a) Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org.
Lett. 2005, 7, 1657. (b) Deng, L.; Liu, J.; Huang, J.; Hu, Y.; Chen, M.; Lan, Y.;
Chen, J.; Lei, A.; Yang, Z. Synthesis 2007, 2565.
(16) Yamanaka, M.; Nakamura, E. J. Am. Chem. Soc. 2001, 123, 1703.
(17) (a) Bruin, T. J. M. de.; Milet, A.; Robert, F.; Gimbert, Y.; Green, A. E.
J. Am. Chem. Soc. 2001, 123, 7184. (b) de Bruin, T. J. M.; Milet, A.; Greene,
A. E.; Gimbert, Y. J. Org. Chem. 2004, 69, 1075. (c) Del Valle, C. P.; Milet,
A.; Gimbert, Y.; Greene, A. E. Angew. Chem., Int. Ed. 2005, 44, 5717.
(18) (a) Ji, J.; Wang, Z.; Lu, X. Organometallics 1996, 15, 2821. (b) Li, J.;
Jiang, H.; Chen, M. J. Org. Chem. 2001, 66, 3627. (c) Wang, Z.; Zhang, Z.; Lu,
X. Organometallics 2002, 19, 775. (d) Lu, X. Top. Catal. 2005, 35, 73. (e) Zhu,
G.; Zhang, Z. J. Org. Chem. 2005, 70, 3339.
(19) (a) Yamamoto, Y.; Nagata, A.; Nagata, H.; Ando, Y.; Arikawa, Y.;
Tatsumi, K.; Itoh, K. Chem.sEur. J. 2003, 9, 2469. (b) Yamamoto, Y.;
Kuwabara, S.; Ando, Y.; Nagata, H.; Nishiyama, H.; Itoh, K. J. Org. Chem.
2004, 69, 6697.
(13) (a) Magnus, P.; Pr´ıncipce, L. M. Tetrahedron Lett. 1985, 26, 4851. (b)
Gimbert, Y.; Lesage, D.; Milet, A.; Fournier, F.; Greene, A. E.; Tabet, J.-C.
Org. Lett. 2003, 5, 4073.
5050 J. Org. Chem. Vol. 74, No. 14, 2009