1
604 Inorganic Chemistry, Vol. 50, No. 5, 2011
em
Sakuda et al.
complex and, therefore, a short τ , as predicted from the
energy-gap dependence of k . These discussions suggest that
the low-energy MLCT absorption/emission and the long
excited-state lifetime of a Ru(II) complex are mutually
contradicting issues. One exceptional case is τ of Ru(II)
characterized by the presence of the vacant p orbital on the
boron atom (p(B)), and the CT interaction between the π
orbital of the aryl group (π(aryl)) and p(B) [π(aryl)-p(B) CT]
gives rise to characteristic spectroscopic and photophysical
properties of the derivative as a represented example, being
nr
em
8
having an aromatic hydrocarbon substituent(s) (ArH =
those of tri-9-anthrylborane and other derivatives. By in-
pyrene, anthracene, and so forth) on the ligand, in which
troduction of a triarylborane substituent to the ligand of a
transition-metal complex, one may expect synergistic inter-
actions between the π(aryl)-p(B) CT in the triarylborane
unit and MLCT in the transition-metal complex, realizing
novel spectroscopic and photophysical functions, not ob-
tained by the triarylborane or metal complex alone. In
practice, we succeeded in the synthetic tuning of the emission
3
the thermal equilibrium between MLCT* and the ππ*
em
excited triplet state of ArH considerably elongates τ of
the complex compared with the relevant complex without
5
em
2þ
ArH: as an example, τ = 150 μs for RuL
(L =
3
5f
4
-pyrenylphen) in CH CN at 300 K. In the simple
MLCT*- dd* nonradiative decay regime, the τ value of
a Ru(II) complex is limited to less than 7 μs in solution at
3
3
3
em
em
0
0
00
quantum yield (Φ ) and lifetime of a 2,2 :6 ,2 -terpyri-
6
0
0
00
room temperature.
dineplatinum(II) (tpy = 2,2 :6 ,2 -terpyridine) complex by
0
For synthetic modulation of the spectroscopic/photophy-
introduction of a (dimesityl)phenylborane group at the 4
position of tpy, B-tpy: [Pt(B-tpy)Cl] , Φ = 0.011, and τ
0.6 μs in CHCl at room temperature. Because it has been
known that [Pt(tpy)Cl] in solution at room temperature is
þ
em
em
sical properties of a transition-metal complex, we proposedin
=
7
7
2
006 the use of a triarylborane-appended ligand. The
3
þ
electronic structure of a triarylborane derivative is best
9
nonluminescent, introduction of the triarylborane CT unit
remarkably influences the photophysical properties of the
(
3) (a) Van Houten, J.; Watts, R. J. J. Am. Chem. Soc. 1976, 98, 4853. (b)
þ
Van Houten, J.; Watts, R. J. Inorg. Chem. 1978, 17, 3381. (c) Durham, B.; Caspar,
J. V.; Nagle, J. K.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4803. (d)
Barrigelletti, F.; Juris, A.; Balzani, V.; Belser, P.; von Zelewsky, A. J. Phys. Chem.
[Pt(B-tpy)Cl] complex. After our first report on [Pt(B-
þ
10
tpy)Cl] , several research groups reported transition-metal
11
12
13
10a,b
(Pt(II), Ir(III), Ru(II), Re(I), or Cu(I)
) complexes
1
987, 91, 1095. (e) Juris, A.; Balzani, V.; Barrigelletti, F.; Campagna, S.; Belser,
bearing an arylborane unit(s) on the ligand, and some of the
complexes are shown to be luminescent in solution at room
P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85. (f) Ferrando, S. R. L.;
Maheroot, U. S. M.; Deshayes, K. D.; Kinstle, T. H.; Ogawa, M. Y. J. Am. Chem.
Soc. 1996, 118, 5783. (g) Macatangay, A.; Zheng, G. Y.; Rillema, D. P.; Jackman,
D. C.; Merkert, J. W. Inorg. Chem. 1996, 35, 6823. (h) Zheng, G. Y.; Rillema,
D. P. Inorg. Chem. 1996, 35, 7118. (i) Hammarstr €o m, L.; Alsins, J.; B €o rje, A.;
Norrby, T.; Zhang, L.; Åkermark, B. J. Photochem. Photobiol. A: Chem. 1997,
10b-d,11,13
temperature.
Nonetheless, detailed experiments on
the photophysical properties of the complexes bearing an
arylborane unit(s) have not been reported yet: T dependences
em
1
02, 139. (j) Hammarstr €o m, L.; Barigelletti, F.; Flamigni, L.; Indelli, M. T.;
of the emission spectrum and τ , radiative/nonradiative rate
Armaroli, N.; Calogero, G.; Guardigli, M.; Sour, A.; Collin, J.-P.; Sauvage, J.-P. J.
Phys. Chem. A 1997, 101, 9061. (k) Wu, F.; Riesgo, E.; Paualora, A.; Kipp, R. A.;
Schmehl, R. H.; Thummel, R. P. Inorg. Chem. 1999, 38, 5620. (l) Benniston,
A. C.; Chapman, G.; Harriman, A.; Mehrabi, M.; Sams, C. A. Inorg. Chem. 2004,
constants, and so forth. We anticipate that syn-
ergistic MLCT/π(aryl)-p(B) CT interactions can tune the
spectroscopic and photophysical properties of various transi-
tion-metal complexes.
4
3, 4227. (m) Thompson, D. W.; Fleming, C. N.; Myron, B. D.; Meyer, T. J. J.
Phys. Chem. B 2007, 111, 6930. (n) Abrahamsson, M.; Becker, H.-C.;
Hammarstr €o m, L.; Bonnefous, C.; Chamchoumis, C.; Thummel, R. P. Inorg.
Chem. 2007, 46, 10354.
In this Article, we report here that the Ru(II) complex
bearing a (dimesityl)boryldurylethynyl (DBDE) group at the
2þ 2þ
4
(4BRu ) or 5 (5BRu ) position of a 1,10-phenanthroline
(
4) (a) Allen, G. H.; White, R. P.; Rillema, D. P.; Meyer, T. J. J. Am.
ligand shows quite intriguing spectroscopic and photophysi-
cal properties: see Chart 1 for the structures. In particular, we
Chem. Soc. 1984, 106, 2613. (b) Henderson, L. J., Jr.; Cherry, W. R. J.
Photochem. 1985, 28, 143. (c) Wacholtz, W. F.; Auerbach, R. A.; Schmehl,
R. H. Inorg. Chem. 1986, 25, 227. (d) Kawanishi, Y.; Kitamura, N.; Tazuke, S.
Inorg. Chem. 1989, 28, 2968. (e) Wang, Y.; Peres, W.; Zheng, G. Y.; Rillema,
D. P. Inorg. Chem. 1998, 37, 2051. (f) Rillema, D. P.; Blanton, C. B.; Shaver, R. J.;
Jackman, D. C.; Boldaji, M.; Bundy, S.; Worl, L. A.; Meyer, T. J. Inorg. Chem.
2þ
found that 4BRu exhibited essentially a low-energy and
em
em
T-independent emission in solution with Φ = 0.11 and τ
1
=
em
2þ
2 μs. To the best of our knowledge, the τ value of 4BRu
1
992, 31, 1600. (g) Treadway, J. A.; Loeb, B.; Lopez, R.; Anderson, P. A.; Keene,
is the longest among those of the polypyridine ruthenium(II)
F. R.; Meyer, T. J. Inorg. Chem. 1996, 35, 2242. (h) Zheng, G. Y.; Wang, Y.;
Rillema, D. P. Inorg. Chem. 1996, 35, 7118. (i) Wang, Y.; Greg, W. P.; Zheng,
G. Y.; Rillema, D. P. Inorg. Chem. 1998, 37, 2051.
complexes hitherto reported. The synthesis and redox, spec-
2þ
troscopic, and photophysical properties of 4BRu
and
(
5) (a) Simon, J. A.; Curry, S. L.; Schmehl, R. H.; Schatz, T. R.;
Piotrowiak, P.; Jin, X.; Thummel, R. P. J. Am. Chem. Soc. 1997, 119,
1012. (b) Harriman, A.; Hissler, M.; Khatyr, A.; Ziessel, R. Chem. Commun.
999, 735. (c) Tyson, D. S.; Castellano, F. N. J. Phys. Chem. A 1999, 103, 10955.
(8) (a) Kitamura, N.; Sakuda, E. J. Phys. Chem. A 2005, 109, 7429.
1
1
(b) Kitamura, N.; Sakuda, E.; Yoshizawa, T.; Iimori, T.; Ohta, N. J. Phys. Chem.
A 2005, 109, 7435. (c) Sakuda, E.; Tsuge, K.; Sasaki, Y.; Kitamura, N. J. Phys.
Chem. B 2005, 109, 22326. (d) Kitamura, N.; Sakuda, E.; Iwahashi, Y.; Tsuge, K.;
Sasaki, Y.; Ishizaka, S. J. Photochem. Photobiol. A: Chem. 2009, 207, 102.
(d) Michalec, J. F.; Behune, S. A.; McMillin, D. R. Inorg. Chem. 2000, 39, 2708.
(e) Tyson, D. S.; Bialecki, J.; Castellano, F. N. Chem. Commun. 2000, 2355.
(f) Tyson, D. S.; Henbest, K. B.; Bialecki, J.; Castellano, F. N. J. Phys. Chem. A
(
e) Kitamura, N.; Sakuda, E.; Ando, E. Chem. Lett. 2009, 38, 938. (f) Sakuda, E.;
Ando, Y.; Ito, A.; Kitamura, N. J. Phys. Chem. A 2010, 114, 9144.
9) Aldridge, T. K.; Stacy, E. M.; McMillin, D. R. Inorg. Chem. 1994, 33,
22.
(10) (a) Sun, Y.; Ross, N.; Zhao, S. B.; Huszarik, K.; Jia, W.-L.; Wang,
2
001, 105, 8154. (g) Morales, A. F.; Accorsi, G.; Armaroli, N.; Barigelletti, F.;
Pope, S. J. A.; Ward, M. Inorg. Chem. 2002, 41, 6711. (h) Maubert, B.;
MaClenagham, N. D.; Indelli, M. T.; Campagna, S. J. Phys. Chem. A 2003,
(
7
1
07, 447. (i) Pomestchenko, I. E.; Luman, C. R.; Hissler, M.; Ziessel, R.;
Castellano, F. N. Inorg. Chem. 2003, 42, 1394. (j) Benniston, A. C.; Harriman,
A.; Lawwrie, D. J.; Mayeux, A. Phys. Chem. Chem. Phys. 2004, 6, 51. (k) Wang,
X.-Y.; Del Guerzo, A.; Schmehl, R. H. J. Photochem. Photobiol. C: Rev. 2004,
R.-Y.; Macartney, D.; Wang, S. J. Am. Chem. Soc. 2007, 129, 7510. (b) Zhao,
S.-B.; M Cormick, T.; Wang, S. Inorg. Chem. 2007, 46, 10965. (c) Sun, Y.; Wang,
c
S. Inorg. Chem. 2009, 48, 3755. (d) Hudson, Z. M.; Zhao, S.-B.; Wang, R.-Y.;
Wang, S. Chem.;Eur. J. 2009, 15, 6131. (e) Rao, Y.-L.; Wang, S. Inorg. Chem.
2009, 48, 7698. (f) Sun, Y.; Wang, S. Inorg. Chem. 2010, 49, 4394.
(11) (a) Zhou, G.; Ho, C.-L.; Wong, W.-Y.; Wang, Q.; Ma, D.; Wang, L.;
Lin, Z.; Marder, T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499. (b) You,
Y.; park, S. Y. Adv. Mater. 2008, 20, 3820. (c) Zhao, Q.; Li, F.; Liu, S.; Yu, M.;
Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256.
5
, 55. (l) Kozlov, D. V.; Tyson, D. S.; Goze, C.; Ziessel, R.; Castellano, F. N.
Inorg. Chem. 2004, 43, 6083–6092. (m) Balazs, G. C.; del Guerzo, A.; Schmehl,
R. H. Photochem. Photobiol. Sci. 2005, 4, 89. (n) Gu, J.; Chen, J.; Schmehl, R. H.
J. Am. Chem. Soc. 2010, 132, 7338.
(
6) Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of
Photochemistry, 3rd ed.; Taylor & Francis: Boca Raton, FL, 2006.
7) Sakuda, E.; Funahashi, A.; Kitamura, N. Inorg. Chem. 2006, 45,
0670.
(
(12) Wade, C. R.; Gabbaı
(13) Lam, S.-T.; Zhu, N.; Yam, V. W.-W. Inorg. Chem. 2009, 48, 9664.
¨
, F. P. Inorg. Chem. 2010, 49, 714.
1