Organic Letters
Letter
(17) Wendlandt, A. E.; Stahl, S. S. Bioinspired Aerobic Oxidation of
Secondary Amines and Nitrogen Heterocycles with a Bifunctional
Quinone Catalyst. J. Am. Chem. Soc. 2014, 136, 506−512.
(18) Wendlandt, A. E.; Stahl, S. S. Modular o-Quinone Catalyst
System for Dehydrogenation of Tetrahydroquinolines under Ambient
Conditions. J. Am. Chem. Soc. 2014, 136, 11910−11913.
(19) Corey, E. J.; Achiwa, K. Oxidation of Primary Amines to
Ketones. J. Am. Chem. Soc. 1969, 91, 1429−1432.
(20) Largeron, M.; Fleury, M.-B. Oxidative Deamination of
Benzylamine by Electrogenerated Quinonoid Systems as Mimics of
Amine Oxidoreductases Cofactors. J. Org. Chem. 2000, 65, 8874−
8881.
(21) Largeron, M.; Neudorffer, A.; Fleury, M.-B. Oxidation of
Unactivated Primary Aliphatic Amines Catalyzed by an Electro-
generated 3,4-Azaquinone Species: A Small-Molecule Mimic of
Amine Oxidases. Angew. Chem., Int. Ed. 2003, 42, 1026−1029.
(22) Largeron, M.; Chiaroni, A.; Fleury, M.-B. Environmentally
Friendly Chemoselective Oxidation of Primary Aliphatic Amines by
Using a Biomimetic Electrocatalytic System. Chem. - Eur. J. 2008, 14,
996−1003.
(23) Yuan, H.; Yoo, W. J.; Miyamura, H.; Kobayashi, S. Discovery of
a Metalloenzyme-like Cooperative Catalytic System of Metal
Nanoclusters and Catechol Derivatives for the Aerobic Oxidation of
Amines. J. Am. Chem. Soc. 2012, 134, 13970−13973.
(24) Largeron, M.; Fleury, M.-B. A Biologically Inspired CuI/
Topaquinone-Like Co-Catalytic System for the Highly Atom-
Economical Aerobic Oxidation of Primary Amines to Imines.
Angew. Chem., Int. Ed. 2012, 51, 5409−5412.
(25) Jawale, D. V.; Gravel, E.; Villemin, E.; Shah, N.; Geertsen, V.;
Namboothiri, I. N. N.; Doris, E. Co-Catalytic Oxidative Coupling of
Primary Amines to Imines Using an Organic Nanotube-Gold
Nanohybrid. Chem. Commun. 2014, 50, 15251−15254.
(26) Qin, Y.; Zhang, L.; Lv, J.; Luo, S.; Cheng, J.-P. Bioinspired
Organocatalytic Aerobic C-H Oxidation of Amines with an ortho-
Quinone Catalyst. Org. Lett. 2015, 17, 1469−1472.
(27) Leon, M. A.; Liu, X.; Phan, J. H.; Clift, M. D. Amine
Functionalization through Sequential Quinone-Catalyzed Oxidation/
Nucleophilic Addition. Eur. J. Org. Chem. 2016, 2016, 4508−4515.
(28) Goriya, Y.; Kim, H. Y.; Oh, K. o-Naphthoquinone-Catalyzed
Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst
Approach. Org. Lett. 2016, 18, 5174−5177.
(29) Rong, H. J.; Cheng, Y. F.; Liu, F. F.; Ren, S. J.; Qu, J. Synthesis
of γ-Lactams by Mild, o-Benzoquinone-Induced Oxidation of
Pyrrolidines Containing Oxidation-Sensitive Functional Groups. J.
Org. Chem. 2017, 82, 532−540.
(30) Largeron, M.; Fleury, M.-B. A Bioinspired Organocatalytic
Cascade for the Selective Oxidation of Amines under Air. Chem. - Eur.
J. 2017, 23, 6763−6767.
(31) Golime, G.; Bogonda, G.; Kim, H. Y.; Oh, K. Biomimetic
Oxidative Deamination Catalysis via ortho-Naphthoquinone-Cata-
lyzed Aerobic Oxidation Strategy. ACS Catal. 2018, 8, 4986−4990.
(32) Sundberg, R. J. In Indoles; Katritzky, A., Meth-Cohn, O., Rees,
C., Eds.; Academic Press: London, U.K., 1996.
(33) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole
Alkaloids: Potential New Drug Leads for the Control of Depression
and Anxiety. Chem. Rev. 2010, 110, 4489−4497.
(34) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns, and Frequency of Nitrogen
Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med.
Chem. 2014, 57, 10257−10274.
(37) Baran, P. S.; Guerrero, C. A.; Corey, E. J. Short,
Enantioselective Total Synthesis of Okaramine N. J. Am. Chem. Soc.
2003, 125, 5628−5629.
(38) Merschaert, A.; Boquel, P.; Van Hoeck, J. P.; Gorissen, H.;
Borghese, A.; Bonnier, B.; Mockel, A.; Napora, F. Novel Approaches
towards the LTD4/E4 Antagonist, LY290154. Org. Process Res. Dev.
2006, 10, 776−783.
(39) For reviews, see the following and refs 40−44. Karchava, A. V.;
Melkonyan, F. S.; Yurovskaya, M. A. New strategies for the Synthesis
of N-Alkylated Indoles (Review). Chem. Heterocycl. Compd. 2012, 48,
391−407.
(40) Gribble, G. W. Recent Developments in Indole Ring Synthesis-
Methodology and Applications. J. Chem. Soc., Perkin Trans. 2000, 1,
1045−1075.
(41) Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the
Synthesis of Indoles. Chem. Rev. 2006, 106, 2875−2911.
(42) Taber, D. F.; Tirunahari, P. K. Indole Synthesis: A Review and
Proposed Classification. Tetrahedron 2011, 67, 7195−7210.
(43) Vicente, R. Recent Advances in Indole Syntheses: New Routes
for a Classic Target. Org. Biomol. Chem. 2011, 9, 6469−6480.
(44) Gribble, G. W. Indoline Dehydrogenation. Indole Ring Synthesis:
From Natural Products to Drug Discovery, 1st ed.; John Wiley & Sons,
Ltd.: West Sussex, U.K., 2016; pp 539−552.
(45) For examples of recent, catalytic indoline dehydrogenation
methods, see the following and refs 46 and 47: Reddy, K. H. V.;
Satish, G.; Ramesh, K.; Karnakar, K.; Nageswar, Y. V. D. An Efficient
Synthesis of N-Substituted Indoles from Indoline/Indoline Carboxylic
Acid via Aromatization Followed by C-N Cross-Coupling Reaction by
Using Nano Copper Oxide as a Recyclable Catalyst. Tetrahedron Lett.
2012, 53, 3061−3065.
(46) Peng, F.; McLaughlin, M.; Liu, Y.; Mangion, I.; Tschaen, D. M.;
Xu, Y. A Mild Cu(I)-Catalyzed Oxidative Aromatization of Indolines
to Indoles. J. Org. Chem. 2016, 81, 10009−10015.
(47) Yayla, H. G.; Peng, F.; Mangion, I. K.; McLaughlin, M.;
Campeau, L.-C.; Davies, I. W.; DiRocco, D. A.; Knowles, R. R.
Discovery and Mechanistic Study of a Photocatalytic Indoline
Dehydrogenation for the Synthesis of Elbasvir. Chem. Sci. 2016, 7,
2066−2073.
(48) For certain reactions, DDQ may be used as a catalyst in
combination with cocatalysts, such as NOx species, to enable O2 to
serve as the stoichiometric oxidant. These protocols are not
universally applicable, however, and were significantly less effective
in the reactions reported here. For examples of DDQ/NOx
cocatalysis, see refs 49−52.
(49) Shen, Z.; Dai, J.; Xiong, J.; He, X.; Mo, W.; Hu, B.; Sun, N.; Hu,
X. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)/tert-Butyl Ni-
trite/Oxygen: A Versatile Catalytic Oxidation System. Adv. Synth.
Catal. 2011, 353, 3031−3038.
(50) Wang, L.; Li, J.; Yang, H.; Lv, Y.; Gao, S. Selective Oxidation of
Unsaturated Alcohols Catalyzed by Sodium Nitrite and 2,3-Dichloro-
5,6-dicyano-1,4-benzoquinone with Molecular Oxygen under Mild
Conditions. J. Org. Chem. 2012, 77, 790−794.
(51) Walsh, K.; Sneddon, H. F.; Moody, C. J. Solar Photochemical
Oxidations of Benzylic and Allylic Alcohols Using Catalytic Organo-
Oxidation with DDQ: Application to Lignin Models. Org. Lett. 2014,
16, 5224−5227.
(52) Lancefield, C. S.; Ojo, O. S.; Tran, F.; Westwood, N. J.
Isolation of Functionalized Phenolic Monomers through Selective
Oxidation and C-O Bond Cleavage of the β-O-4 Linkages in Lignin.
Angew. Chem., Int. Ed. 2015, 54, 258−262.
(53) See the following reference for a ΔH value; an entropy of 30
e.u. is estimated for the product of two molecules from one: Dean, D.;
Davis, B.; Jessop, P. J. The Effect of Temperature, Catalyst and Sterics
on the Rate of N-heterocycle Dehydrogenation for Hydrogen Storage.
New J. Chem. 2011, 35, 417−422.
(35) Sugiyama, H.; Yokokawa, F.; Aoyama, T.; Shioiri, T. Synthetic
studies of N-reverse Prenylated Indole. An efficient Synthesis of
Antifungal Indole Alkaloids and N-Reverse Prenylated Tryptophan.
Tetrahedron Lett. 2001, 42, 7277−7280.
(36) Sugiyama, H.; Shioiri, T.; Yokokawa, F. Syntheses of Four
Unusual Amino Acids, Constituents of Cyclomarin A. Tetrahedron
Lett. 2002, 43, 3489−3492.
(54) DDQ + 2e− + 2H+ → DDQH2; ΔE° = 0.89 V vs NHE (ΔG° =
41 kcal/mol). For DDQ reduction potential, see: Huynh, M. T.;
Anson, C. W.; Cavell, A. C.; Stahl, S. S.; Hammes-Schiffer, S. Quinone
1 e− and 2 e−/2 H+ Reduction Potentials: Identification and Analysis
E
Org. Lett. XXXX, XXX, XXX−XXX