P. A. Bentley et al. / Tetrahedron Letters 49 (2008) 1425–1427
1427
2. Thomas, G. Medicinal Chemistry: An Introduction; VCH-Wiley, 2000.
3. Faulkner, D. J. Nat. Prod. Rep. 1986, 3, 1.
fluoro group (6) gave a reaction of decreased duration that
afforded chlorohydrin (15) in a slightly reduced yield
(Table 2, entry 1). Whilst a methyl group (7) gave a reac-
tion three times faster (Table 2, entry 2). The phenyl func-
tionality change to an aliphatic moiety such as n-hexyl (8)
lead to a slower reaction with lower yield and unfortu-
nately almost no regiocontrol (Table 2, entry 3). A dige-
minal olefin (9) gave excellent regiocontrol for formation
of chlorohydrin with the highest yield observed, in a short
reaction time (Table 2, entry 4). But a trisubstituted olefin
showed markedly less regiocontrol with a notably lower
yield (Table 2, entry 5). Olefins with a variety of electronic
environments were exposed to the reaction conditions. A
chlorohydrin was formed from stilbene (11) quite rapidly
in moderate yield (Table 2, entry 6). Chalcone (12) chloro-
hydrination was faster with little change in the yield (Table
2, entry 7). Finally cycloalkenes were studied; the aliphatic
methylcyclohexene gave a slower reaction with inferior
yield (Table 2, entry 8) compared to aromatic indene (13)
that reacted very rapidly, to provide the chlorohydrin in
one of the higher yields of the substrates studied (Table
2, entry 9).
4. Sisti, A. J.; Vitale, A. C. J. Org. Chem. 1972, 37, 4090.
5. Nace, H. R.; Crosby, G. A. J. Org. Chem. 1978, 44, 3105.
6. Corey, E. J.; Das, J. Tetrahedron Lett. 1982, 23, 4217.
7. Rosen, T. In Darzens Glycidic Ester Condensation; Trost, B. M.,
Fleming, I., Eds.; Oxford, 1991.
8. Bonini, C.; Righi, G. Synthesis 1994, 225.
9. Boguslavskaya, L. S. Russ. Chem. Soc. Rev. 1972, 41, 740.
10. Dewkar, G. K.; Narina, S. V.; Sudalai, A. Org. Lett. 2003, 5, 4501.
11. Rosenau, T.; Potthast, A.; Kosma, P. Tetrahedron 2002, 58, 9809.
12. El-Qisairi, A. K.; Qaseer, H. A.; Henry, P. M. J. Organomet. Chem.
2002, 656, 168.
13. Mendonca, G. F.; Sanseverino, A. M.; de Mattos, M. C. S. Synthesis
2003, 45.
14. de Souza, S. P. L.; da Silva, J. F. M.; de Mattos, M. C. S. J. Braz.
Chem. Soc. 2003, 14, 832.
15. Kutney, J. P.; Singh, A. K. Can. J. Chem. 1982, 60, 1842.
16. Virgil, S. C. In N-Chlorosuccinimide, Paquette, L. A., Ed., New York,
1995.
17. Berkessel, A.; Groger, H. Asymmetric Organocatalysis; Wiley-VCH,
2004.
18. Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
19. Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc.
2004, 126, 4108.
20. Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jorgensen, K.
A. J. Am. Chem. Soc. 2004, 126, 4790.
In summary, the organocatalysis of reactions involving
N-succinimides have been demonstrated, with cheap and
commercially available reagents. NCS showed unprece-
dented chlorination of olefins in the presence of water
and gave chlorohydrins in moderate to good yields when
catalyzed by thiourea or its derivatives. Work is currently
focused towards other chlorination or bromination reac-
tions using NCS or NBS and thiourea, in addition to the
development of an asymmetric variant of the reaction.
21. Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299.
22. Curran, D. P.; Kuo, L. H. J. Org. Chem. 1994, 59, 3259.
23. Curran, D. P.; Kuo, L. H. Tetrahedron Lett. 1995, 36, 6647.
24. Wittkopp, A.; Schreiner, P. R. Chem. Eur. J. 2003, 9, 407.
25. Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217.
26. Okino, T.; Hoashi, Y.; Takemoto, Y. Tetrahedron Lett. 2003, 44,
2817.
27. Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.
28. Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
29. Tillman, A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191.
30. Yoon, T. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 466.
31. Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 4102.
32. Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558.
33. Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Chem.
Pharm. Bull. 2004, 52, 477.
Acknowledgments
Financial support from the Department of Chemistry
and Biological Chemistry and the Research Allocation
Committee, University of New Mexico is greatly
acknowledged.
34. Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672.
35. Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7,
1967.
36. Manher, D. J.; Connon, S. J. Tetrahedron Lett. 2004, 45, 1301.
37. Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetra-
hedron Lett. 2004, 45, 5589.
Supplementary data
38. Wang, J.; Li, H.; Yu, X.; Zu, L.; Wang, W. Org. Lett. 2005, 7, 4293.
39. Menche, D.; Hassfeld, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S.
Org. Lett. 2006, 8, 741.
40. Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299.
41. Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Tetrahedron
Lett. 1990, 31, 1334.
Supplementary data associated with this article can be
References and notes
42. This trend maybe ascribed to the difference in pKa (urea is 26.9 and
thiourea is 21.0, both in DMSO) given the earlier mechanistic
speculation.
1. Smith, M. B.; March, J. Advanced Organic Chemistry: Reactions,
Mechanism and Structure; Wiley-VCH, 2001.