2ymax = 53.421, 41 084 reflections measured, 7333 unique, Rint = 0.1140,
GoF = 0.974, R
data for 2a: C18
C2/c, a = 31.6886(18), b = 9.9269(6), c = 23.1586(13) A, b =
1
[I 4 2s(I)] = 0.0753, wR
2
(all data) = 0.2238. Crystal
ꢀ1
H
34
O
3
ScꢁC24 20B, M = 662.62 g mol , monoclinic,
H
˚
3
ꢀ1
,
˚
9
3.9940(10)1, V = 7267.3(7) A , Z = 8, m(MoK
T = 100(2) K, 2ymax = 60.981, 53 345 reflections measured, 10 704
unique, Rint = 0.0840, GoF = 0.947, R [I 4 2s(I)] = 0.0475, wR (all
data) 0.1134. Crystal data for 3c: 48MgO 20Sc)ꢁ
ꢁ2(C12
(C /n, a = 13.0491(12),
b = 11.3146(10), c = 20.4870(18) A, b = 97.444(4)1, V = 2999.3(5) A ,
a
) = 0.240 mm
1
2
=
24
C H
6
H
ꢀ1
2
4
H O), M = 1019.62 g mol , monoclinic, P2
8
1
3
˚
˚
ꢀ
1
Z = 2, m(MoK
a
) = 0.284 mm , T = 130(2) K, 2ymax = 52.981, 43819
reflections measured, 6000 unique, Rint = 0.2219, GoF = 0.841, R
(all data) = 0.1759.
1
[
I 4 2s(I)] = 0.0670, wR
2
Fig. 3 Molecular structure of the anionic part of [Mg(THF)
1
6
]-
3
[
Sc(Z -C
3
H
5
)
2
(Z -C
3
H
5
)
2
]
2
(3c). Displacement ellipsoids shown at 50%
1 (a) L. Friebe, O. Nuyken and W. Obrecht, Adv. Polym. Sci., 2006,
04, 1; (b) S. M. Guillaume, E. Kirillov, Y. Sarazin and
J.-F. Carpentier, C. R. Chim., 2010, 13, 608.
2+
2
probability; hydrogen atoms and cation [Mg(THF)
6
]
are omitted for
˚
clarity. Selected interatomic distances [A] and angles [1]: Sc1–C1 2.450(5),
Sc1–C2 2.436(6), Sc1–C3 2.450(6), Sc1–C4 2.488(5), Sc1–C5 2.453(5),
Sc1–C6 2.424(5), Sc1–C7 2.271(5), Sc1–C10 2.277(5), C1–Sc1–C7
2
(a) N. Yu, M. Nishiura, X. Li, Z. Xi and Z. Hou, Chem.–Asian J.,
2
008, 3, 1406; (b) Z. Jian, D. Cui, Z. Hou and X. Li, Chem.
Commun., 2010, 46, 3022; (c) L. Zhang, T. Suzuki, Y. Luo,
M. Nishiura and Z. Hou, Angew. Chem., Int. Ed., 2007, 46, 1909.
D. Robert, E. Abinet, T. P. Spaniol and J. Okuda, Chem.–Eur. J.,
110.2(2), C6–Sc1–C10 109.6(2), C7–Sc1–C10 96.1(2).
3
1
17b
and [{MgCl(THF)
2
}
3
(m
3
-C
3
H
5
)
2
]
2
[Mg(Z -C
3
H
5
)
4
]
contain four
2
009, 15, 11937.
1
Z -coordinated allyl fragments to the smaller metal centers
aluminium and magnesium. The anion in [Li(TMEDA) ]-
)] with the smaller nickel(II) center
4 M. P. Pu, Q. Li, Y. Xie, R. B. King and H. F. Schaefer, J. Phys.
Chem. A, 2011, 115, 4491.
5 P. Jochmann, T. Dols, T. P. Spaniol, L. Perrin, L. Maron and
J. Okuda, Angew. Chem., Int. Ed., 2009, 48, 5715.
6 (a) R. Taube, J. Organomet. Chem., 1996, 513, 49; (b) R. Taube,
2
1
3
[
Ni(Z -C
3
H
5
)
2
(Z -C
3 5
H
3
1
22
contains one Z - and two Z -coordinated allyl ligands.
The neutral (tris)allyl compound 1 was also observed as
only product from 2a with one equivalent of 3a containing the
1
cationic as well as the anionic fragment in a H NMR experi-
¨
H. Windisch, F. H. Gorlitz and H. Schumann, J. Organomet.
Chem., 1993, 445, 85; (c) R. Taube, S. Maiwald and J. Sieler,
J. Organomet. Chem., 2001, 621, 327.
L. F. Sanchez-Barba, D. L. Hughes, S. M. Humphrey and
´
7
ment (Fig. S3, ESIw). Furthermore, 3a reacted with two
equivalents of the Brønsted acid [NEt H][BPh ] to give 2a.
M. Bochmann, Organometallics, 2005, 24, 5329.
8
9
E. Abinet, T. P. Spaniol and J. Okuda, Chem.–Asian J., 2011, 6, 389.
S. C. Chmely, C. N. Carlson, T. P. Hanusa and A. L. Rheingold,
J. Am. Chem. Soc., 2009, 131, 6344.
0 E. G. Hoffmann, R. Kallweit, G. Schroth, K. Seevogel,
W. Stempfle and G. Wilke, J. Organomet. Chem., 1975, 97, 183.
3
4
Cationic allyl compounds are known to catalyze the poly-
1
–3
merization of olefins.
Since 2c is better soluble in organic
1
solvents than 2a and 2b, this compound was tested for the
3
,23
polymerization of styrene and 1,3-butadiene in toluene.
Atactic polystyrene was isolated in modest yield after 1 h at
11 N. Yue, E. Hollink, F. Gue
2
´
rin and D. W. Stephan, Organometallics,
001, 20, 4424.
2 I. Peckermann, G. Raabe, T. P. Spaniol and J. Okuda, Chem.
Commun., 2011, 47, 5061.
1
1
5
0 1C. Polymerization of 1,3-butadiene gave a mixture of
,4-polybutadiene (cis/trans ratio = 2 : 1) and 1,2-polybutadiene
3 (a) M. E. Thompson, S. M. Baxter, A. R. Bulls, B. J. Burger,
M. C. Nolan, B. D. Santarsiero, W. P. Schaefer and J. E. Bercaw,
J. Am. Chem. Soc., 1987, 109, 203; (b) M. B. Abrams, J. C. Yoder,
C. Loeber, M. W. Day and J. E. Bercaw, Organometallics, 1999,
18, 1389; (c) J. C. Yoder, M. W. Day and J. E. Bercaw, Organo-
metallics, 1998, 17, 4946.
4 R. Coutts and P. C. Wailes, J. Organomet. Chem., 1970, 25, 117.
5 (a) S. Demir, S. E. Lorenz, M. Fang, F. Furche, G. Meyer,
J. W. Ziller and W. J. Evans, J. Am. Chem. Soc., 2010, 132,
11151; (b) S. Demir, E. Montalvo, J. W. Ziller, G. Meyer and
W. J. Evans, Organometallics, 2010, 29, 6608; (c) S. Demir,
T. J. Mueller, J. W. Ziller and W. J. Evans, Organometallics, 2011,
1
in moderate yield after 15 min at 25 1C. This is comparable to the
reported polymerizations of 1,3-butadiene using the analogous
3
3
neodymium catalyst [Nd(Z -C H ) (THF) ][BPh ].
3
5 2
3
4
In conclusion, we have structurally characterized the neutral,
cationic and anionic allyl compounds of scandium 1–3. Fluxional
behavior of the coordination manner of the allyl ligands is found
1
1
1
in solution. Even at ꢀ95 1C the H NMR spectra of 1a and 3a do
not show decoalescence. The crystal structure of the anionic part
1
3
of 3c contains two Z - and two Z -coordinated allyl ligands, the
scandium atom in the neutral compound 1a is bonded to one
30, 3083.
16 J. B. Wilkes, J. Org. Chem., 1967, 32, 3231.
1
3
1
1
7 (a) R. A. Layfield and S. M. Humphrey, Angew. Chem., Int. Ed.,
2004, 43, 3067; (b) T. H. Bullock, F. Garcıa, S. M. Humphrey,
P. Schuler and R. A. Layfield, Chem. Commun., 2006, 2039.
Z - and two Z -coordinated allyl ligands and the cationic part in
3
´
2
a contains two Z -coordinated allyl ligands. The smallest
¨
rare earth metal scandium represents a borderline case for
3
8 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr.,
Theor. Gen. Crystallogr., 1976, 32, 751.
19 S. O’Brien, M. Fishwick, B. McDermott, M. G. H. Wallbridge and
G. A. Wright, Inorg. Synth., 1971, 13, 73.
0 Z. Huang, M. Chen, W. Qiu and W. Wu, Inorg. Chim. Acta, 1987,
Z -coordination of allyl ligands that is common for all larger,
1
–8,11,13–15,20,24
less electronegative metals.
The high activity of
some scandium complexes in polymerizations may be corre-
1
2
2
2
2
3
lated with the propensity to both Z - and Z -allyl binding
modes in the reactive intermediate prior to olefin insertion.
139, 203.
1 C. Lichtenberg, T. P. Spaniol and J. Okuda, Organometallics, 2011,
1
3b
3
2 D. Alberti, R. Goddard, A. Rufin
0, 4409.
We are grateful to the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie for financial support.
´
ska and K.-R. Po
¨
rschke,
Organometallics, 2003, 22, 4025.
3 General conditions for polymerization: m(2c)
= 15 mg;
[
2
monomer]/[2c] = 1000; [Al(CH
0 mL; styrene: 50 1C, 1 h; 1,3-butadiene: 25 1C, 15 min.
2 2 3
CHMe ) ]/[2c] = 5; Vtotal =
Notes and references
ꢀ
1
z Crystal data for 1a: C17
P2 /c, a = 14.341(6), b = 21.027(9), c = 11.963(5) A, b = 104.738(7)1,
V = 3489(3) A , Z = 8, m(MoK
H
31
O
2
Sc, M = 312.38 g mol , monoclinic,
24 Metrical parameters for allyl bonds for 1a,b and the anion of 3a–c
are in good agreement with those obtained by DFT calculations;
Prof. L. Maron, personal communication.
˚
1
3
ꢀ1
˚
a
) = 0.422 mm , T = 100(2) K,
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11441–11443 11443