Chemical Science
Page 6 of 6
DOI: 10.1039/C5SC00221D
Fujioka, Angew. Chem. Int. Ed., 2010, 49, 9174 (f) S. E. Denmark
and M. T. Burk, Org. Lett., 2011, 14, 256; (g) D. Huang, H. Wang, F.
Xue, H. Guan, L. Li, X. Peng and Y. Shi, Org. Lett., 2011, 13, 6350;
(h) R. Yousefi, D. C. Whitehead, J. M. Mueller, R. J. Staples and B.
Borhan, Org. Lett., 2011, 13, 608; (i) R. Yousefi, K. D. Ashtekar, D.
C. Whitehead, J. E. Jackson and B. Borhan, J. Am. Chem. Soc., 2013,
135, 14524; (j) D. H. Paull, C. Fang, J. R. Donald, A. D. Pansick and
S. F. Martin, J. Am. Chem. Soc., 2012, 134, 11128; (k) M. C. Dobish
and J. N. Johnston, J. Am. Chem. Soc., 2012, 134, 6068; (l) Y.-M.
Wang, J. Wu, C. Hoong, V. Rauniyar and F. D. Toste, J. Am. Chem.
Soc., 2012, 134, 12928; (m) V. Rauniyar, A. D. Lackner, G. L.
Hamilton and F. D. Toste, Science, 2011, 334, 1681; (n) T. Honjo, R.
J. Phipps, V. Rauniyar and F. D. Toste, Angew. Chem. Int. Ed., 2012,
51, 9684; (o) J. Wu, Y.-M. Wang, A. Drljevic, V. Rauniyar, R. J.
Phipps and F. D. Toste, Proc. Natl. Acad. Sci., 2013, 110, 13729; (p)
H. Nakatsuji, Y. Sawamura, A. Sakakura and K. Ishihara, Angew.
Chem. Int. Ed., 2014, 53, 6974; (q) L. Li, C. Su, X. Liu, H. Tian and
Y. Shi, Org. Lett., 2014, 16, 3728.
For selected references of catalytic asymmetric olefin
aminobromination and aminoiodination, see: (a) Y. Cai, X. Liu, Y.
Hui, J. Jiang, W. Wang, W. Chen, L. Lin and X. Feng, Angew. Chem.
Int. Ed., 2010, 49, 6160; (b) L. Zhou, J. Chen, C. K. Tan and Y.-Y.
Yeung, J. Am. Chem. Soc., 2011, 133, 9164; (c) Y. F. Cai, X. H. Liu,
J. Li, W. L. Chen, W. T. Wang, L. L. Lin and X. M. Feng, Chem.-
Eur. J., 2011, 17, 14916; (d) A. Alix, C. Lalli, P. Retailleau and G.
Masson, J. Am. Chem. Soc., 2012, 134, 10389; (e) D. Huang, X. Liu,
L. Li, Y. Cai, W. Liu and Y. Shi, J. Am. Chem. Soc., 2013, 135,
8101; (f) C. S. Brindle, C. S. Yeung and E. N. Jacobsen, Chem. Sci.,
Chem. Soc., 1991, 113, 726; (b) H. Nishiyama, Y. Itoh, H.
Matsumoto, S.-B. Park and K. Itoh, J. Am. Chem. Soc., 1994, 116,
2223; (c) Y. Nishikawa and H. Yamamoto, J. Am. Chem. Soc., 2011,
133, 8432.
75
80
85
5
10
15
20
25
30
13 The absolute stereochemistry of 2a was determined by X-ray
crystallographic analysis of a structural analog of 2a. See Supporting
Information for details.
14 For detailed procedure and HPLC traces of 4, see Supporting
Information.
15 For the synthesis of L9, see ref. 6.
16 The ironL5 complex catalyzed the reaction favoring the syn-
addition product: dr(anti/syn): 0.47:1; ee for the anti-addition product
is 60% and ee for the syn-addition product is <5%. The relative
stereochemistry was assigned based on the 1H NMR and X-ray
crystallographic analysis of a structural analog described in ref. 6; see
Supporting Information for details.
17 When chloroacetyl group is used as the activating group, different
result was obtained. For details, see entry 8 of Table 3.
3
90 18 For a selected example of stepwise atom transfer reactions with
different reaction profiles presented by cis/trans isomeric olefins, see:
N. H. Lee and E. N. Jacobsen, Tetrahedron Lett., 1991, 32, 6533.
19 For the oxidation of a radical species by a high-valent metal through
ligand transfer or electron transfer, see: (a) M. S. Kharasch and G.
95
Sosnovsky, J. Am. Chem. Soc., 1958, 80, 756; (b) J. K. Kochi,
Science, 1967, 155, 415. For a selected reference of a relevant
enzymatic CH chlorination reaction of hydrocarbons catalyzed by
iron-containing metalloenzymes, see: (c) F. H. Vaillancourt, J. Yin
and C. T. Walsh, Proc. Natl. Acad. Sci., 2005, 102, 10111.
2013, 4, 2100; (g) F. Chen, C. K. Tan and Y.-Y. Yeung, J. Am. 100
Chem. Soc., 2013, 135, 1232. For mechanistically relevant
asymmetric olefin sulfenofunctionalization, see: (h) S. E. Denmark
and H. M. Chi, J. Am. Chem. Soc., 2014, 136, 8915; (i) S. E.
Denmark, E. Hartmann, D. J. P. Kornfilt and H. Wang, Nat Chem,
2014, 6, 1056.
35 4 For existing asymmetric olefin aminochlorination methods, see: (a)
Y. F. Cai, X. H. Liu, J. Jiang, W. L. Chen, L. L. Lin and X. M. Feng,
J. Am. Chem. Soc., 2011, 133, 5636; (b) M. T. Bovino and S. R.
Chemler, Angew. Chem. Int. Ed., 2012, 51, 3923; (c) Y. Cai, X. Liu,
P. Zhou, Y. Kuang, L. Lin and X. Feng, Chem. Commun., 2013, 49,
40
45
50
55
60
65
8054.
5
For catalytic olefin aminohydroxylation that proceeds through an
iron-nitrenoid intermediate, see: (a) G.-S. Liu, Y.-Q. Zhang, Y.-A.
Yuan and H. Xu, J. Am. Chem. Soc., 2013, 135, 3343; (b) Y.-Q.
Zhang, Y.-A. Yuan, G.-S. Liu and H. Xu, Org. Lett., 2013, 15, 3910;
(c) D.-F. Lu, C.-L. Zhu, Z.-X. Jia and H. Xu, J. Am. Chem. Soc.,
2014, 136, 13186.
D.-F. Lu, G.-S. Liu, C.-L. Zhu, B. Yuan and H. Xu, Org. Lett., 2014,
16, 2912.
(a) T. Bach, B. Schlummer and K. Harms, Chem. Commun., 2000,
287; (b) T. Bach, B. Schlummer and K. Harms, Chem.-Eur. J., 2001,
7, 2581; (c) H. Danielec, J. Klügge, B. Schlummer and T. Bach,
Synthesis, 2006, 551.
6
7
8
9
For substrate synthesis, see Supporting Information for details.
Acyloxyl carbamates are reactive, while tosyloxyl and alkoxyl
carbmates are nonreactive and fully recovered under the reaction
condition.
The relative stereochemistry of 2a was determined by comparison of
the experimental NMR data with the ones reported in ref. 7. It was
further corroborated by 1H NMR and X-ray crystallographic analysis
of a structural analog of 2a. See Supporting Information for details.
10 The relative stereochemistry was assigned based on the 1H NMR and
X-ray crystallographic analysis of a structural analog described in ref.
6; see Supporting Information for details.
11 Complementary stereochemistry was achieved (in entry 15 of Table
2), compared with the known method reported in ref. 7, where the
syn-aminochlorination product was isolated. This substrate did not
undergo kinetic resolution with chiral catalyst, the Fe(NTf2)2L5
complex. Both the starting material and product were isolated as
racemate.
70 12 For leading references of chiral BOX and relevant ligands, see: (a) D.
A. Evans, K. A. Woerpel, M. M. Hinman and M. M. Faul, J. Am.
6
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]