1924
DALE ET AL.
ANTIMICROB. AGENTS CHEMOTHER.
9. Burdeska, A., and R. L. Then. 1990. Clinical importance of trimethoprim
resistance in staphylococci isolated in Europe. J. Med. Microbiol. 31:11–14.
10. Cohen, M. L. 1992. Epidemiology of drug resistance: implications for a
post-antimicrobial era. Science 257:1050–1055.
11. Coughter, J. P., J. L. Johnston, and G. L. Archer. 1987. Characterization of
a staphylococcal trimethoprim resistance gene and its product. Antimicrob.
Agents Chemother. 31:1027–1032.
12. Dale, G. E., C. Broger, P. G. Hartman, H. Langen, M. G. P. Page, R. L. Then,
and D. Stu¨ber. 1995. Characterization of the gene for the chromosomal
dihydrofolate reductase of Staphylococcus epidermidis ATCC 14990: the or-
igin of the trimethoprim resistant S1 DHFR from S. aureus? J. Bacteriol.
177:2965–2970.
13. Dale, G. E., H. Langen, H. Schoenfeld, and M. Stieger. 1994. Increased
solubility of trimethoprim resistant type S1 DHFR from Staphylococcus
aureus in Escherichia coli cells overproducing the chaperonins GroEL and
GroES. Protein Eng. 7:925–931.
14. Dale, G. E., R. L. Then, and D. Stu¨ber. 1993. Characterization of the gene for
chromosomal trimethoprim-sensitive dihydrofolate reductase of Staphylo-
coccus aureus ATCC 25923. Antimicrob. Agents Chemother. 37:1400–1405.
15. Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of
sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
16. Filman, D. J., J. T. Bolin, D. A. Matthews, and J. Kraut. 1982. Crystal
structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase
refined at 1.7 Å resolution. II. Environment of bound NADPH and impli-
cations for catalysis. J. Biol. Chem. 257:13663–13672.
17. Froggatt, J. W., J. L. Johnston, D. W. Galetto, and G. L. Archer. 1989.
Antimicrobial resistance in nosocomial isolates of Staphylococcus haemolyti-
cus. Antimicrob. Agents Chemother. 33:460–466.
18. Galetto, D. W., J. L. Johnston, and G. L. Archer. 1987. Molecular epidemi-
ology of trimethoprim resistance among coagulase-negative staphylococci.
Antimicrob. Agents Chemother. 31:1683–1688.
2). The refolded recombinant S2DHFR is highly resistant to
Tmp and shows Km values for substrate and cofactor which are
comparable to those for the Tmp-resistant S1DHFR and the
Tmp-susceptible SeDHFR (the chromosomally encoded DHFR
of S. epidermidis ATCC 14990). Since the enzyme was isolated
from inclusion bodies, denatured, and finally refolded, the
enzyme kinetics might not be accurate. Nevertheless, the data
demonstrate that the dfrD gene encodes the novel Tmp-resis-
tant DHFR responsible for the high-level Tmp resistance of S.
haemolyticus MUR313.
Comparisons between S2DHFR and the other DHFRs show
that the active site of S2DHFR is very similar to those known
from staphylococci (8, 12, 14, 28). Like the other staphylococ-
cal enzymes, S2DHFR has a small hydrophobic amino acid
(Val) at position 35, which is occupied by a Phe residues in
chromosomal DHFRs from other organisms (Fig. 2). The va-
line residue is proposed to make strong hydrophobic contacts
with the pyrimidine ring of Tmp (26). At the far interior of the
active site and making van der Waals contacts with the pyrim-
idine ring of Tmp (26), the staphylococcal enzymes contain a
phenylalanine (residue 99), whereas this position is occupied
by a small hydrophobic amino acid in other DHFRs (Fig. 2).
Since the active sites of S2DHFR and S1DHFR seem to be
rather similar and results from mutagenesis experiments of
S1DHFR clearly implicated the presence of a Tyr residue at
position 98 as being the major determinant for Tmp resistance
(12), one could speculate that the tyrosine residue of S2DHFR
at the corresponding position (residue 105) will also be the
major determinant for resistance of this enzyme. The molecu-
lar origin of dfrD is unknown, but because of the striking
similarities between the active site of S2DHFR and those of
the other staphylococcal enzymes, it is tempting to assume that
it originates from a closely related staphylococcal species.
19. Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White (ed.). 1990. PCR
protocols: a guide to methods and applications. Academic Press, Inc., San
Diego, Calif.
20. Iwakura, M., M. Kawata, K. Tsuda, and T. Tanaka. 1988. Nucleotide se-
quence of the thymidylate synthase B and dihydrofolate reductase genes
contained in one Bacillus subtilis operon. Gene 64:9–20.
21. Jacoby, G. A., and G. L. Archer. 1991. New mechanisms of bacterial resis-
tance to antimicrobial agents. N. Engl. J. Med. 324:601–612.
22. Levitz, R. E., and R. Quintiliani. 1984. Trimethoprim-sulfamethoxazole for
bacterial meningitis. Ann. Intern. Med. 100:881–890.
23. Lyon, B. R., J. W. May, and R. A. Skurray. 1983. Analysis of plasmids in
nosocomial strains of multiple antibiotic resistant Staphylococcus aureus.
Antimicrob. Agents Chemother. 23:817–826.
ACKNOWLEDGMENTS
24. Lyon, B. R., and R. Skurray. 1987. Antimicrobial resistance of Staphylococ-
cus aureus: genetic basis. Microbiol. Rev. 51:88–134.
25. Matthews, D. A., J. T. Bolin, J. M. Burridge, D. J. Filman, K. W. Volz, B. T.
Kaufman, C. R. Beddell, J. N. Champness, D. K. Stammers, and J. Kraut.
1985. Refined crystal structures of Escherichia coli and chicken liver dihy-
drofolate reductase containing bound trimethoprim. J. Biol. Chem. 260:381–
391.
We are most grateful to Sabine Demmak, Daniel Ro¨der, and Arno
Friedlein for excellent technical assistance. Special thanks go to Petra
Scheliga for consistently supplying us with DHF and to Peter Hartman
and Beat Schwaller for their advice and criticism.
REFERENCES
26. Matthews, D. A., J. T. Bolin, J. M. Burridge, D. J. Filman, K. W. Volz, and
J. Kraut. 1985. Dihydrofolate reductase: the stereochemistry of inhibitor
selectivity. J. Biol. Chem. 260:392–399.
27. Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257:1064–1073.
28. Rouch, D. A., L. J. Messerotti, L. S. L. Loo, C. A. Jackson, and R. A. Skurray.
1989. Trimethoprim resistance transposon Tn4003 from Staphylococcus au-
reus encodes genes for a dihydrofolate reductase and thymidylate synthetase
flanked by three copies of IS257. Mol. Microbiol. 3:161–175.
1. Appleman, J. R., J. Tsay, J. H. Freisheim, and R. L. Blakley. 1992. Effect of
enzyme and ligand protonation on the binding of folates to recombinant
human dihydrofolate reductase: implications for the evolution of eukaryotic
enzyme efficiency. Biochemistry 31:3709–3715.
2. Archer, G. L., J. P. Coughter, and J. L. Johnston. 1986. Plasmid-encoded
trimethoprim resistance in staphylococci. Antimicrob. Agents Chemother.
29:733–740.
3. Archer, G. L., D. M. Niemeyer, J. A. Thanassi, and M. J. Pucci. 1994.
Dissemination among staphylococci of DNA sequences associated with me-
thicillin resistance. Antimicrob. Agents Chemother. 38:447–454.
4. Baccanari, D. P., and S. S. Joyner. 1981. Dihydrofolate reductase hysteresis
and its effect on inhibitor binding analyses. Biochemistry 20:1710–1716.
5. Bennett, P. M., J. Heritage, and P. M. Hawkey. 1986. An ultra-rapid method
for the study of antibiotic resistance plasmids. J. Antimicrob. Chemother.
18:421–424.
6. Bolin, J. T., D. J. Filman, D. A. Matthews, R. C. Hamlin, and J. Kraut. 1982.
Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate
reductase refined at 1.7 Å resolution. I. General features and binding of
methotrexate. J. Biol. Chem. 257:13650–13662.
29. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a labo-
ratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor, N.Y.
30. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with
chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
31. Smith, D. R., and J. M. Calvo. 1980. Nucleotide sequence of the E. coli gene
coding for dihydrofolate reductase. Nucleic Acids Res. 8:2255–2273.
32. Stu¨ber, D., H. Matile, and G. Garotta. 1990. System for high level production
in E. coli and rapid purification of recombinant proteins: application to
epitope mapping, preparation of antibodies and structure-function analysis,
p. 121–152. In I. Lefkovits, and B. Pernis (ed.), Immunological methods.
Academic Press, Inc., Orlando, Fla.
7. Burdeska, A. 1990. Trimethoprim-resistance in staphylococci: genetic and
biochemical characterisation of plasmid-encoded trimethoprim-resistant di-
hydrofolate reductases. Ph.D. thesis. University of Basel, Basel, Switzerland.
8. Burdeska, A., M. Ott, W. Bannwarth, and R. L. Then. 1990. Identical genes
for trimethoprim-resistant dihydrofolate reductase from Staphylococcus au-
reus in Australia and Central Europe. FEBS Lett. 266:159–162.
33. Swartz, M. N. 1994. Hospital-acquired infections: diseases with increasingly
limited therapies. Proc. Natl. Acad. Sci. USA 91:2420–2427.
34. Then, R. L., I. Kohl, and A. Burdeska. 1992. Frequency and transferability of
trimethoprim and sulfonamide resistance in methicillin-resistant Staphylo-
coccus aureus and Staphylococcus epidermidis. J. Chemother. 4:67–71.