Conclusion:
3 4 2
A new reusable Pd-AcAc-Am-Fe O @SiO nanomagnetic catalyst was successfully prepared and characterized using ATR‐IR,
TEM, FE-SEM, EDX, ICP‐AES and VSM. The main advantages of the catalyst are simplicity, selectivity, eco-friendliness and ease of
recovery using an external magnetic field. The recovered catalyst can be reused up to six cycles without significant loss of catalytic
activity. The developed protocol offers many advantages such as broad substrate scope, functional group tolerance, short reaction times,
excellent yields, catalyst reusability, etc. making it compatible for industrial scale application.
Acknowledgement:
One of the authors DMP grateful to acknowledge, Shivaji University, Kolhapur for Financial Assist through Research Strengthening
Scheme. [SU/C&U.D.Section/89/1386].
References and notes
1
2
3
4
5
6
7
8
.
.
.
.
.
.
.
.
Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133-173.
Phan, N. T. S.; Van, M.; Der Sluys, C. W. J. Adv. Synth. Catal. 2006, 348, 609-679.
Corbet, J.‐P.; Mignani, G.; Chem. Rev. 2006, 106, 2651-2710.
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1470.
Belardi, J. K.; Micalizio, G. C. Angew. Chem. Int. Ed. 2008, 47, 4005-4008.
Jia, Y.; Bois‐Choussy, M.; Zhu, J. Angew. Chem. Int. Ed. 2008, 47, 4167-4172.
Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.; Blagg, B. S. J. J. Am. Chem. Soc. 2006, 128, 15529-15536.
Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.; Yue, T.-Y.; Natarajan, S.; Chu, X.-J; Bräse, S.; Rübsam, F. Chem. Eur. J. 1999, 5, 2584-
2
601.
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
.
Stanforth, S. P. Tetrahedron 1998, 54, 263-303.
0. Veisi, H.; Naja, S.; Hemmati, S. Int. J. Biol. Macromol., 2018, 113, 186–194.
1. Veisi, H.; Gholami, J.; Ueda, H.; Mohammadi, P.; Noroozi, M. J. Mol. Catal. A: Chem., 2015, 396, 216-223.
2. Sydnes, M. O. Catalysts, 2017, 7, 35 -49.
3. Stevens, P. D.; Fan, J.; Gardimalla, H. M. R.; Yen, M.; Gao, Y.; Org. Lett. 2005, 7, 2085 – 2088.
4. Zhang, X.; Li, P.; Ji, Y.; Zhang, L.; Wang, L. Synthesis 2011, 18, 2975–2983.
5. Anuradha, Kumari, S.; Layeka S.; Pathak, D. New J. Chem., 2017, 41, 5595-5604.
6. Yuan, D.; Chen, L.; Yuan, L.; Liao, S.; Yang, M.; Zhang, Q. Chem Eng J 2016, 287, 241–251.
7. Sobhani, S.; Mesbah Falatooni, Z.; Asadi, S.; Honarmand, M. Catal. Lett., 2016, 146, 255-268.
8. Vishal, K.; Fahlman, B. D.; Sasidhar, B. S.; Patil Shivaputra, A.; Patil Siddappa, A.; Catal Lett 2017,147, 900-918.
9. Jadhav, S. N.; Kumbhar, A. S.; Rode, C. V.; Salunkhe, R. S.; Green Chem. 2016, 18, 1898-1911.
0. Wang, Y.; Liu, Y.; Zhang, W. Q.; Sun, H.; Zhang, K.; Jian, Y.; Gu, Q.; Zhang, G.; Li, J.; Gao, Z. ChemSusChem 2019, 12, 5265-5273.
1. Takale B. S.; Thakore, R. R.; Handa, S.; Gallou, F.; Reilly, J.; Lipshutz, B. H. Chem. Sci. 2019, 10, 8825-8831.
2. Thakore, R. R.; Takale, B. S.; Gallou, F.; Reilly, J.; Lipshutz, B. H. ACS Catal. 2019, 9, 11647-11657
3. Dewan, A.; Bora, U.; Borah, G. Tetrahedron Lett. 2014, 55, 1689-1692.
4. Shahnaz, N.; Banik, B.; Das, P. Tetrahedron Lett. 2013, 54, 2886-2889.
5. Patil, S. A.; Weng, C. M.; Huang, P. C.; Hong, F. E. Tetrahedron 2009, 65, 2889-2897.
6. Lai, Y. C.; Chen, H. Y.; Hung, W. C.; Lin, C. C.; Hong, F. E. Tetrahedron 2005, 61, 9484-9489.
7. Gawande, M. B.; Manoj, B.; Monga, Y.; Zboril, R.; Sharma, R.K. Coord. Chem. Rev. 2015, 288, 118-143.
8. Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma R. S.; Gawande, M. B. Green Chem., 2016, 18, 3184-3209.
9. Rivallan, F. Thomas, M. Lepage, S. Takagi, M. Hirata, N. Thibault‐Starzyk, H. Chem. Cat. Chem. 2010, 2, 1599-1605.
0. Bansal, V. K., Thankachan, P. P., Prasad, R. Appl. Catal. A 2010, 381, 8-17.
1. Chang, Y.; Lv, Y.; Lu, F.; Zha, F.; Lei, Z. J. Mol. Catal. A 2010, 320, 56-61.
2. Chang, Y.; Shi, X. L.; Zhu, D. M.; Liu, Y. Polym. Adv. Technol. 2008, 19, 877-881.
3. Sharma, S.; Sinha, S.; Chand, S. Ind. Eng. Chem. Res. 2012, 51, 8806-8814.
4. Li, Z. Y.; Tang, R. R.; Liu, G. Y. Catal. Lett. 2013, 143, 592-599.
5. Baleizão, C.; Corma, A.; García, H.; Leyva, A. Chem. Commun., 2003, 606-607.
6. Vibhute, S. P.; Mhaldar, P. M.; Korade, S. N.; Gaikwad, D. S.; Shejawal, R. V.; Pore, D.M. Tetrahedron Lett. 2018, 59, 3643-3652.
7. Polshettiwar, V.; Varma, R. S. Org. Biomol. Chem., 2009, 7, 37-40.
8. Waldron.; R. D. Phys. Rev., 1955, 99, 1727.
9. Esmaeilpour, M.; Sardarian A. R.; Javidi, J. J. Organomet. Chem., 2014, 749, 233-240.
0. (a) Braga, A. A. C.; Morgon, N. H.; Ujaque G.; Maseras, F. J. Am. Chem. Soc., 2005, 127, 9298−9307; (b) Sicre, C.; Braga, A. A. C.; Maseras F.;
Cid, M. M. Tetrahedron, 2008, 64, 7437–7443; (c) Carrow B. P.; Hartwig, J. F J. Am. Chem. Soc., 2011, 133, 2116–2119; (d) Amatore, C.; Jutand A.;
Le Duc, G. Chem. Eur. J., 2011, 17, 2492-2503.
4
4
4
4
4
1. Crowley, B. M.; Potteiger, C. M.; Deng, J. Z.; Prier, C. K.; Paone, D. V.; Burgey, C. S. Tetrahedron Lett. 2011, 52, 5055-5059.
2. Kitamura, Y.; Sako, S.; Udzu, T.; Tsutsui, A.; Maegawa, T.; Monguchi Y.; Sajiki, H. Chem. Commun., 2007, 5069-5943.
3. Shi S.; Zhang Y., Green Chem., 2008, 10, 868-872.
4. Liu C.; Yang, W. Chem. Commun., 2009, 6267-6272.
5. Rathi, A.K.; Gawande, M.B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R.S.; Zboril, R.
Green Chem., 2016, 18, 2363-2373.
4
4
4
4
5
5
5
5
6. Lv, G.; Mai, W.; Jin,R.; Gao, L. Synlett.,2008, 9, 1418-1422.
7. Zhang, X.; Li, P.; Ji, Y.; Zhang, L.; Wang, L. Synthesis, 2011,18, 2975–2983
8. Arlin Jose Amali and Rohit Kumar Rana, Green Chem., 2009,11, 1781-1786.
9. Shylesh,S.; Wang, L.; Thiel, W. R. Adv. Synth. Catal., 2010, 352, 425-432.
0. Yang, H.; Wang, Y.; Qin, Y.; Chong, Y.; Yang, Q.; Li, G.; Zhang, L.; Li, W. Green Chem., 2011, 13, 1352-1361.
1. Tanhaei, M.; Mahjoub, A.; Nejat, R. Catal. Lett., 2018, 148, 1549–1561.
2. Sarvi, I. Gholizadeh, M. Izadyar, M. Catal. Lett., 2017, 147, 1162-1171.
3. Ghorbani-Vaghei, R.; Hemmati, S.; Veisib H.; J. Mol. Catal. A-Chem., 2014, 393, 420-247.