5
pp 941–974; (b) Rossi, S.; Benaglia, M.; Massolo, E.; Raimondi,
L. Catal. Sci. Technol. 2014, 4, 2708.
enantioselectivity is good in several cases, with ees up to 86%.
While stoichiometric (or more) amounts of the chiral activator
are required for useful outcomes, the reused activator remains
just as effective as in its initial use. The studied reaction
demonstrates both utility in its current state and promise for
future studies that are able to expand on the number of chiral
Lewis base activators examined.
5
.
(a) Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N. J. Chem.
Soc. Chem. Commun. 1981, 315; (b) Corey, E. J.; Bakshi, R. K.;
Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551; (c) Baxter, E. W.;
Reitz, A. B. Org. React. 2002, 59, 1; (d) Itsuno, S. in
Hydroboration of carbonyl groups, in Comprehensive Asymmetric
Catalysis, vol. 1 (Eds.; Jacobsen, E. N. P.; Pfaltz, A.; Yamamoto,
H.), Springer-Verlag, Berlin, 1999, pp. 289–315.
6
7
.
.
(a) Karrer, P.; Benz, F. Helv. Chim. Acta 1936, 19, 1028; (b)
Ouellet, S. G.; Walji, A. M.; Macmillan, D. W. C. Acc. Chem.
Res. 2007, 40, 1327; (c) You, S.-L. Chem. Asian J. 2007, 2, 820;
(d) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011,
1
3, 1084.
Rendler, S.; Oestreich, M. in Diverse Modes of Silane Activation
for the Hydrosilylation of Carbonyl Compounds Modern
Reduction Methods (Eds.; Andersson, P.G.; Munslow, I. J.)
Wiley-VCH, Weinheim, 2008, pp 183-207.
8
9
.
.
Larson, G. L.; Fry, J. L. Org. React. 2008, 71, 1.
Chiral silanes in asymmetric hydrosilylation: (a) Fry, J. L.;
McAdam, M. A. Tetrahedron Lett. 1984, 25, 5859; (b) Rendler,
S.; Oestreich, M. Angew. Chem. Int. Ed. 2008, 47, 5997; (c) Kaya,
U.; Tran, U. P. N.; Enders, D.; Ho, J.; Nguyen, T. V. Org. Lett.
2
017, 19, 1398.
1
1
0. Kohra, S.; Hayashida, H.; Tominaga, Y.; Hosomi, A. Tetrahedron
Lett. 1988, 29, 89.
1. Chiral-Lewis-base-catalyzed hydrosilylations: (a) Pini, D.; Iuliano,
A.; Salvadori, P. Tetrahedron: Asymmetry 1992, 3, 693; (b)
Schiffers, R.; Kagan, H. B. Synlett 1997, 1175; (c) LaRonde, F. J.;
Brook, M. A. Inorganica Chim. Acta 1999, 296, 208; (d) Gan, L.;
Brook, M. A. Can. J. Chem. 2006, 84, 1416; (e) Gan, L.; Brook,
M. A. Organometallics 2007, 26, 945.
1
2. Amide-catalyzed asymmetric hydrosilylation of ketones using
trichlorosilane: (a) Iwasaki, F.; Onomura, O.; Mishima, K.; Maki,
T.; Matsumura, Y. Tetrahedron Lett. 1999, 40, 7507; (b) Zhou, L.;
Wang, Z.; Wei, S.; Sun, J. Chem. Commun. 2007, 2977; (c)
Malkov, A. V.; Stewart-Liddon, A. J. P.; McGeoch, G. D.;
Ramírez-López, P.; Kočovský, P. Org. Biomol. Chem. 2012, 10,
4
864.
1
1
3. Lawrence, N. J.; Drew, M. D.; Bushell, S. M. J. Chem. Soc.,
Perkin Trans 1 1999, 3381.
4. Metal-catalyzed hydrosilylations with PMHS: (a) Li, M.; Li, B.;
Xia, H.-F.; Ye, D.; Wu, J.; Shi, Y. Green Chem. 2014, 16, 2680;
(b) Zhang, X.-C.; Wu, F.-F.; Li, S.; Zhou, J.-N.; Wu, J.; Li, N.;
Fang, W.; Lam, K. H.; Chan, A. S. C. Adv. Synth. Catal. 2011,
Figure 5. Scope of select prochiral ketones. Reaction conditions: 1-
hydrosilatrane 1 (2 equiv.), activator 7 (1 equiv.), dry THF (3 mL), -30 °C, 6
h. ee and conversion determined by GCMS; the enantiomer shown was the
major product.
3
53, 1457; (c) Addis, D.; Shaikh, N.; Zhou, S.; Das, S.; Junge, K.;
Beller, M. Chem. Asian J. 2010, 5, 1687; (d) Lipshutz, B. H.;
Lower, A.; Kucejko, R. J.; Noson, K. Org. Lett. 2006, 8, 2969; (e)
Lipshutz, B. H.; Lower, A.; Noson, K. Org. Lett. 2002, 4, 4045;
Acknowledgments
(
2
f) Sirol, S.; Courmarcel, J.; Mostefai, N.; Riant, O. Org. Lett.
001, 3, 4111.
The authors thank the Technology Transfer Office at Northern
Illinois University for providing funding for this work.
1
1
1
5. (a) Revunova, K.; Nikonov, G. I. Chem. Eur. J. 2014, 20, 839; (b)
Buchwald, S. L. C&EN 1993, 71(13), 2.
6. Varjosaari, S. E.; Skrypai, V.; Suating, P.; Hurley, J. J. M.;
Gilbert, T. M.; Adler, M. J. Eur. J. Org. Chem. 2017, 229.
7. (a) Frye, C. L.; Vincent, G. A.; Finzel, W. A. J. Am. Chem. Soc.
References and notes
1
971, 93, 6805; b) Ishiyama, T.; Saiki, T.; Kishida, E.; Sasaki, I.;
1
.
(a) Magano, J.; Dunetz, J. R. Org. Process. Res. Dev. 2012, 16,
156; (b) Abdel-Magid, A. F. in Reduction of C=O to CHOH by
Metal Hydrides. In Comprehensive Organic Synthesis, Vol. 8,
Eds.; Knochel, P.; Molander, G. A.), Elsevier, Oxford, 2014, pp
−84; (c) Cho, B. T. Chem. Soc. Rev. 2009, 38, 443.
(a) Zaidlewicz, M.; Pakulski, M. M. in Science of Synthesis
Stereoselective Synthesis 2 (Ed.; Molander, G. A.), Thieme,
Stuttgart, 2011, pp 59−131; (b) Kortmann, F.; Minnaard, A. in
Stereoselective synthesis of drugs and natural products (Eds.;
Andrushko, V.; Andrushko, N.), Wiley, Hoboken, 2013, pp 993–
Ito, H.; Miyaura, N. Org. Biomol. Chem. 2013, 11, 8162.
8. See the ESI of our previous work, reference 16.
9. For more information on our attempts to make the system
catalytic, see the ESI
1
1
1
(
1
2
0. The cost of (1R,2S)-ephedrine on the Sigma Aldrich website
2
.
(USA) was $960 USD/100g as of December 2017.
Supplementary Material
1
014.
The ESI contains general information and procedures,
characterization of products, yields, chiral GCMS data, and NMR
spectra.
3
4
.
.
(a) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111,
1
1
713; (b) Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999,
0, 2045; (c) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr.
Chem. 2010, 291, 395.
(a) Li, G.; Antilla, J. C. in Comprehensive enantioselective
organocatalysis (Ed.; Dalko, P. I.), Wiley-VCH, Weinheim, 2013,