Journal of the American Chemical Society
Communication
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, characterization data, and crystallo-
■
*
S
graphic details for 1-s, 1-a, and 1-a-(1,1-dimethylpropylamine)2
AUTHOR INFORMATION
ACKNOWLEDGMENTS
■
We thank Lawrence M. Henling for crystallographic assistance.
We are grateful to Caltech and Dow Chemical for funding. The
Bruker KAPPA APEXII X-ray diffractometer was purchased via
an NSF CRIF:MU award to Caltech (CHE-0639094). The 400
MHz NMR spectrometer was purchased via NIH Award
RR027690.
REFERENCES
1) Delferro, M.; Marks, T. J. Chem. Rev. 2011, 111, 2450.
2) Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. Chem. Rev. 2011,
■
(
(
1
(
2
(
11, 2363.
3) Hu, T.; Li, Y. G.; Li, Y. S.; Hu, N. H. J. Mol. Catal. A: Chem. 2006,
53, 155.
4) Na, S. J.; Joe, D. J.; Sujith, S.; Han, W. S.; Kang, S. O.; Lee, B. Y. J.
Organomet. Chem. 2006, 691, 611.
5) Sujith, S.; Joe, D. J.; Na, S. J.; Park, Y. W.; Chow, C. H.; Lee, B. Y.
Macromolecules 2005, 38, 10027.
Figure 3. Competition between ethylene and amine for binding to
nickel in bimetallic complexes.
(
seen for 1-a. For several of the secondary and primary amines
(
dipropylamine, N-methylbutylamine, dibutylamine, and butyl-
(
(
(
(
6) Wang, W. H.; Jin, G. X. Inorg. Chem. Commun. 2006, 9, 548.
7) Zhang, D.; Jin, G. X. Inorg. Chem. Commun. 2006, 9, 1322.
8) Chen, Q.; Yu, J.; Huang, J. Organometallics 2007, 26, 617.
9) Rodriguez, B. A.; Delferro, M.; Marks, T. J. Organometallics 2008,
amine), tight coordination and insufficient bulk resulted in no
polymerization (Table 1, entries 20−22 and 24). With
intermediate-sized tertiary amines, as the size increased, the
inhibition of 1-s decreased relative to 1-a (NMeEt vs NEt and
2
3
27, 2166.
n
n
2
n
n
NMe Bu vs NMe Pr vs NMe Pr vs N Pr ). This is consistent
(10) Salata, M. R.; Marks, T. J. J. Am. Chem. Soc. 2007, 130, 12.
(11) Li, H. B.; Li, L. T.; Schwartz, D. J.; Metz, M. V.; Marks, T. J.;
Liable-Sands, L.; Rheingold, A. L. J. Am. Chem. Soc. 2005, 127, 14756.
2
2
3
with the first coordinated amine hindering the binding of the
second. Although X-ray-quality crystals of the corresponding
syn isomer could not be obtained, the solid-state structure of
the 1,1-dimethylpropylamine adduct of the bimetallic anti
isomer highlights how the alkyl substituent of the primary
amine extends toward the opposite aryl group, likely blocking
the binding of a second amine in 1-s (Figure 2). With larger
(12) Li, H. B.; Marks, T. J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
1
5295.
(13) Guo, N.; Li, L.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 6542.
(14) Guo, N.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 2008, 130,
2
(
246.
15) Rodriguez, B. A.; Delferro, M.; Marks, T. J. J. Am. Chem. Soc.
n
n
amines (NMe Bu and N Bu ), it is proposed that binding of
2
3
2009, 131, 5902.
an amine at one nickel prevents the binding of ethylene at the
second nickel of 1-s; hence, the bimetallic effect is not
apparent. Bulky and less basic N,N-dimethylbenzylamine and
N,N-dimethylaniline likely show low inhibition because of weak
binding to either isomer.
(16) Radlauer, M. R.; Day, M. W.; Agapie, T. Organometallics 2011,
submitted.
(17) Zuideveld, M. A.; Wehrmann, P.; Rohr, C.; Mecking, S. Angew.
Chem., Int. Ed. 2004, 43, 869.
(
18) Wehrmann, P.; Zuideveld, M.; Thomann, R.; Mecking, S.
Macromolecules 2006, 39, 5995.
19) Crompton, T. R. Analysis of Polymers: An Intoduction; Pergamon
Press: London, 1989.
20) Younkin, T. R.; Conner, E. F.; Henderson, J. I.; Friedrich, S. K.;
Grubbs, R. H.; Bansleben, D. A. Science 2000, 287, 460.
21) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100,
In summary, new mono- and dinickel ethylene polymer-
ization catalysts have been reported. The supporting ligands
based on atropisomers of a locked terphenyl backbone allow for
control of the relative position of the two catalytic centers. The
syn bimetallic isomer shows less inhibition by added amines
relative to the anti bimetallic and monometallic catalysts. The
bimetallic effect observed with 1-s is proposed to arise from the
close proximity of the nickels, which disfavors simultaneous
ligation of base to both of the metal centers. This behavior is
expected to have applications in the design of olefin
polymerization catalysts with increased functional group
tolerance and with potential for copolymerization of polar
olefins by sterically favoring catalyst interactions with the olefin
rather than the polar moiety. Future studies will explore these
areas along with extending the terphenyl motif with restricted
rotation to other multimetallic catalyst systems.
(
(
(
1169.
(22) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414.
(23) Jenkins, J. C.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 5827.
(24) Wu, F.; Foley, S. R.; Burns, C. T.; Jordan, R. F. J. Am. Chem. Soc.
2
005, 127, 1841.
25) Berkefeld, A.; Drexler, M.; Moal
Chem. Soc. 2009, 131, 12613.
26) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am.
Chem. Soc. 1998, 120, 888.
(
̀
ler, H. M.; Mecking, S. J. Am.
(
1
481
dx.doi.org/10.1021/ja210990t | J. Am. Chem.Soc. 2012, 134, 1478−1481