Inorganic Chemistry
Article
(
12) Li, J.; Liu, X.; Sun, Z.; Pan, L. Mesoporous yolk-shell structure
(29) Zhao, Y.; Huang, Y.; Xue, L.; Sun, X.; Wang, Q.; Zhang, W.;
Wang, K.; Zong, M. Polyaniline(PANI) coated Zn SnO cube as
Bi MoO6 microspheres with enhanced visible light photocatalytic
2
2
4
activity. Ceram. Int. 2015, 41, 8592−8598.
anode materials for lithium batteries. Polym. Test. 2013, 32, 1582−
(
13) Yang, Z.; Shen, M.; Dai, K.; Zhang, X.; Chen, H. Controllable
1587.
synthesis of Bi MoO nanosheets and their facet-dependent visible-
(30) Yang, L.; Wang, S.; Mao, J.; Deng, J.; Gao, Q.; Tang, Y.;
2
6
light-driven photocatalytic activity. Appl. Surf. Sci. 2018, 430, 505−
14.
14) Zhao, W.; Li, C.; Wang, A.; Lv, C.; Zhu, W.; Dou, S.; Wang, Q.;
Schmidt, O. G. Hierarchical MoS /polyaniline nanowires with
excellent electrochemical performance for lithium-ion batteries. Adv.
Mater. 2013, 25, 1180−1184.
(31) Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.;
Shan, B.; Huang, Y. Na(+) intercalation pseudocapacitance in
graphene-coupled titanium oxide enabling ultra-fast sodium storage
and long-term cycling. Nat. Commun. 2015, 6, 6929.
2
5
(
Zhong, Q. Polyaniline decorated Bi2MoO6 nanosheets with effective
interfacial charge transfer as photocatalysts and optical limiters. Phys.
Chem. Chem. Phys. 2017, 19, 28696−28709.
(
15) Tang, D.; Mabayoje, O.; Lai, Y.; Liu, Y.; Mullins, C. B.
Enhanced Photoelectrochemical Performance of Porous Bi MoO
2
6
(32) Branzoi, V.; Pilan, L.; Branzoi, F. Nanocomposite Films
̂ ̂
Obtained by Electrochemical Codeposition of Conducting Polymers
Photoanode by an Electrochemical Treatment. J. Electrochem. Soc.
017, 164, H299−H306.
16) Zhao, W.; Wang, A.; Wang, Y.; Lv, C.; Zhu, W.; Dou, S.; Wang,
Q.; Zhong, Q. Accessible fabrication and mechanism insight of
heterostructured BiOCl/Bi MoO /g-C N nanocomposites with
2
(
and Carbon Nanotubes. Electroanalysis 2009, 21, 557−562.
(33) Kawakita, J.; Miura, T.; Kishi, T. Lithium insertion and
extraction kinetics of Li1+xV3O . J. Power Sources 1999, 83, 79−83.
8
2
6
3
4
(34) Ge, P.; Hou, H.; Banks, C. E.; Foster, C. W.; Li, S.; Zhang, Y.;
efficient photosensitized activity. J. Alloys Compd. 2017, 726, 164−
72.
17) Zhao, W.; Li, C.; Wang, A.; Lv, C.; Zhu, W.; Dou, S.; Wang, Q.;
He, J.; Zhang, C.; Ji, X. Binding MoSe with carbon constrained in
2
1
(
carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion
storage. Energy Storage Materials 2018, 12, 310−323.
Zhong, Q. Polyaniline decorated Bi2MoO6 nanosheets with effective
interfacial charge transfer as photocatalysts and optical limiters. Phys.
Chem. Chem. Phys. 2017, 19, 28696−28709.
(35) Deng, Z.; Jiang, H.; Hu, Y.; Liu, Y.; Zhang, L.; Liu, H.; Li, C.
3
D Ordered Macroporous MoS @C Nanostructure for Flexible Li-
2
Ion Batteries. Adv. Mater. 2017, 29, 1603020.
36) Wu, F.; Wang, X.; zheng, W.; Gao, H.; Hao, C.; Ge, C.
Synthesis and characterization of hierarchical Bi MoO /Polyaniline
(
18) Chen, W.-b.; Zhang, L.-n.; Ji, Z.-j.; Zheng, Y.-d.; Yuan, S.;
(
Wang, Q. Self-Supported Bi MoO Nanosheet Arrays as Advanced
2
6
2
6
Integrated Electrodes for Li-Ion Batteries with Super High Capacity
and Long Cycle Life. Nano 2018, 13, 1850066.
nanocomposite for all-solid-state asymmetric supercapacitor. Electro-
chim. Acta 2017, 245, 685−695.
(
19) Zheng, Y.; Zhou, T.; Zhao, X.; Pang, W. K.; Gao, H.; Li, S.;
(37) Wang, H.; Song, Y.; Zhou, J.; Xu, X.; Hong, W.; Yan, J.; Xue,
Zhou, Z.; Liu, H.; Guo, Z. Atomic Interface Engineering and Electric-
R.; Zhao, H.; Liu, Y.; Gao, J. High-performance supercapacitor
materials based on polypyrrole composites embedded with core-
Field Effect in Ultrathin Bi MoO Nanosheets for Superior Lithium
2
6
Ion Storage. Adv. Mater. 2017, 29, 1700396.
20) Yuan, S.; Zhao, Y.; Chen, W.; Wu, C.; Wang, X.; Zhang, L.;
Wang, Q. Self-Assembled 3D Hierarchical Porous Bi MoO Micro-
sheath polypyrrole@MnMoO nanorods. Electrochim. Acta 2016, 212,
4
(
7
(
75−783.
2
6
38) Liu, H.; Zhang, F.; Li, W.; Zhang, X.; Lee, C. S.; Wang, W.;
spheres toward High Capacity and Ultra-Long-Life Anode Material
Tang, Y. Porous tremella-like MoS /polyaniline hybrid composite
2
for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 21781−
with enhanced performance for lithium-ion battery anodes. Electro-
chim. Acta 2015, 167, 132−138.
2
(
1790.
21) Zhai, X.; Gao, J.; Xue, R.; Xu, X.; Wang, L.; Tian, Q.; Liu, Y.
(39) Bi, J.; Fang, W.; Li, L.; Li, X.; Liu, M.; Liang, S.; Zhang, Z.; He,
Facile synthesis of Bi MoO /reduced graphene oxide composites as
2
6
Y.; Lin, H.; Wu, L.; et al. Ternary reduced-graphene-oxide/Bi MoO /
2
6
anode materials towards enhanced lithium storage performance. J.
Colloid Interface Sci. 2018, 518, 242−251.
Au nanocomposites withenhanced photocatalytic activity under
visible light. J. Alloys Compd. 2015, 649, 28−34.
(
22) Weng, W.; Lin, J.; Du, Y.; Ge, X.; Zhou, X.; Bao, J. Template-
(40) Wang, P.; Ao, Y.; Wang, C.; Hou, J.; Qian, J. A one-pot method
free synthesis of metal oxide hollow micro-/nanospheres via Ostwald
for the preparation of graphene−Bi2MoO6 hybrid photocatalysts that
are responsive to visible-light and have excellent photocatalytic
activity in the degradation of organic pollutants. Carbon 2012, 50,
ripening for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 10168−
1
(
0175.
23) Park, J. S.; Jeong, S. Y.; Jeon, K. M.; Kang, Y. C.; Cho, J. S. Iron
5
(
256−5264.
diselenide combined with hollow graphitic carbon nanospheres as a
high-performance anode material for sodium-ion batteries. Chem. Eng.
J. 2018, 339, 97−107.
41) Hardcastle, F. D.; Wachs, I. E. Molecular structure of
molybdenum oxide in bismuth molybdates by Raman spectroscopy.
J. Phys. Chem. 1991, 95, 10763−10772.
(
24) Hu, S.; Chen, W.; Zhou, J.; Yin, F.; Uchaker, E.; Zhang, Q.;
(
42) Zhang, L.; Wan, M. Polyaniline/TiO Composite Nanotubes. J.
Cao, G. Preparation of carbon coated MoS flower-like nanostructure
2
2
Phys. Chem. B 2003, 107, 6748−6753.
43) Zhao, Y.; Manthiram, A. High-Capacity, High-Rate Bi-Sb Alloy
Anodes for Lithium-Ion and Sodium-Ion Batteries. Chem. Mater.
015, 27, 3096−3101.
44) Jasieniak, J. J.; Treat, N. D.; McNeill, C. R.; de Villers, B. J.;
Della Gaspera, E.; Chabinyc, M. L. Interfacial Characteristics of
with self-assembled nanosheets as high-performance lithium-ion
(
battery anodes. J. Mater. Chem. A 2014, 2, 7862−7872.
(
25) Zhang, J.; Chu, R.; Chen, Y.; Jiang, H.; Zhang, Y.; Huang, N.
2
(
M.; Guo, H. Electrodeposited binder-free NiCo O @carbon nano-
2
4
fiber as a high performance anode for lithium ion batteries.
Nanotechnology 2018, 29, 125401.
Efficient Bulk Heterojunction Solar Cells Fabricated on MoO Anode
(
26) Qi, Y.; Yang, X.; Chen, W. MoO2 and PANI/MoO2
x
Nanocomposites as Anode Materials for Lithium-ion Batteries. Adv.
Interlayers. Adv. Mater. 2016, 28, 3944−3951.
OptoElectron. Energy Environ. 2013, ASa3A.30.
(45) Kulkarni, S.; Patil, U.; Shackery, I.; Sohn, J.; Lee, S.; Park, B.;
Jun, S. High-performance supercapacitor electrode based on a
polyaniline nanofibers/3D graphene framework as an efficient charge
transporter. J. Mater. Chem. A 2014, 2, 4989−4998.
(46) Sreedhar, B.; Sairam, M.; Chattopadhyay, D. K.; Mitra, P. P.;
Rao, D. V. M. Thermal and XPS studies on polyaniline salts prepared
by inverted emulsion polymerization. J. Appl. Polym. Sci. 2006, 101,
499−508.
(47) Luo, Y.; Kong, D.; Jia, Y.; Luo, J.; Lu, Y.; Zhang, D.; Qiu, K.; Li,
C.; Yu, T. Self-assembled graphene@PANI nanoworm composites
(
27) Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.;
Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G.; et al.
Hierarchical hollow spheres of Fe O @polyaniline for lithium ion
2
3
battery anodes. Adv. Mater. 2013, 25, 6250−6255.
(
28) Zhang, F.; Yang, C.; Gao, X.; Chen, S.; Hu, Y.; Guan, H.; Ma,
Y.; Zhang, J.; Zhou, H.; Qi, L. SnO @PANI Core-Shell Nanorod
2
Arrays on 3D Graphite Foam: A High-Performance Integrated
Electrode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017,
9, 9620−9629.
K
Inorg. Chem. XXXX, XXX, XXX−XXX