Scheme 1
.
Strategies for Preparation of Aryl and Alkenyl
Nitriles
Table 1. The Direct Approach to Alkenyl Nitrile 2a from Allyl
Bromide 1a
a
oxidant
(equiv)
time
(h)
yield of
2a (%)
b
entry
solvent
c
1
DDQ (2.0)
PIDA (2.0)
CAN (2.0)
DDQ (1.3)
BQ (2.0)
DDQ (1.3)
DDQ (1.3)
DDQ (1.3)
DDQ (1.3)
DDQ (1.3)
DDQ (1.3)
DDQ (1.3)
DDQ (1.3)
CH
CH
CH
CH
CH
CH
CH
CH
2
3
3
3
2
2
2
2
ClCH
CN
CN
2
Cl
12
6
6
2
2
0.5
2
2
2
2
3
8
0
70
0
84 (81)
80
0
65
42
37
22
16
2
3
4
5
6
CN
ClCH
ClCH
ClCH
ClCH
2
2
2
2
Cl
C
Cl
Cl
d
7
e
8
be transformed to alkenyl nitriles under those conditions. Our
continued efforts in the development of efficient nitriles
synthesis promoted us to explore a broad-spectrum approach
to nitriles. In our reported method, it was demonstrated that
benzyl azide is the key intermediate, which undergoes a novel
f
9
dioxane
CH NO
f
1
1
1
1
0
1
2
3
3
2
ethyl acetate
DMSO
DMF
2
2
2
8
f
f
a
Reaction conditions: 1a (0.5 mmol), NaN
3
(0.6 mmol), TBAB (0.025
for 24 h; oxidant
(
3) Recent examples for synthesis of nitriles from amides or oximes:
a) Ishihara, K.; Furuya, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2002,
1, 2983. (b) Kuo, C.-W.; Zhu, J.-L.; Wu, J.-D.; Chu, C.-M.; Yao, C.-F.;
Shia, K.-S. Chem. Commun. 2007, 301. (c) Choi, E.; Lee, C.; Na, Y.; Chang,
S. Org. Lett. 2002, 4, 2369. (d) Yamaguchi, K.; Fujiwara, H.; Ogasawara,
Y.; Kotani, M.; Mizuno, N. Angew. Chem., Int. Ed. 2007, 46, 3922. (e)
Zhou, S.; Addis, D.; Das, S.; Junge, K.; Beller, M. Chem. Commun. 2009,
mmol) in dry solvent (2 mL), stirred at 25 °C under N
was then added, and the mixture was heated to reflux. GC yield using
2
(
b
4
n-dodecane as internal standard; the number in the parentheses is the isolated
c
yield. The oxidant was added together with the other reagents at the first
d
step and then refluxed for 12 h. 18-Crown-6 (0.05 equiv) was used instead
e
f
of TBAB. The reaction was carried out in the absence of TBAB. The
nd step was carried out at 100 °C.
2
4
2
7
6
2
883. (f) Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Tetrahedron Lett.
009, 50, 5532. (g) Singh, M. K.; Lakshman, M. K. J. Org. Chem. 2009,
4, 3079. (h) Saha, D.; Saha, A.; Ranu, B. C. Tetrahedron Lett. 2009, 50,
088. (i) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Org. Lett.
009, 11, 2461.
oxidative rearrangement to afford aryl nitrile. We envisioned
that benzyl and allyl azides, which could be easily prepared
from simple and readily available organic halides, could be
the potential precursors for the corresponding aryl and
alkenyl nitriles through a proper oxidation (b, Scheme 1).
Herein, we demonstrate a novel TBAB (tetra-n-butylammo-
nium bromide)-catalyzed tandem substitution and the sub-
sequent oxidative rearrangement approach to aryl and alkenyl
nitriles from benzyl and allyl halides, respectively (b, Scheme
(
4) Recent examples for synthesis of nitriles from amines or alcohols:
(
a) Iida, S.; Togo, H. Tetrahedron 2007, 63, 8274. (b) Oischi, T.;
Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2009, 48, 6286. (c)
Chen, F.-E.; Kuang, Y.-Y.; Dai, H.-F.; Lu, L.; Huo, M. Synthesis 2003,
1
7, 2629. (d) Reddy, K. R.; Maheswari, C. U.; Venkateshwar, M.;
Prashanthi, S.; Kantam, M. L. Tetrahedron Lett. 2009, 50, 2050. (e) Chen,
F.-E.; Li, Y.-Y.; Xu, M.; Jia, H.-Q. Synthesis 2002, 13, 1804. (f) McAllister,
G. D.; Wilfred, C. D.; Taylor, R. J. K. Synlett 2002, 8, 1291.
(
5) Recent examples for direct cyanation through C-H bond function-
alization: (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 6790. (b) Mariampillai, B.; Alliot, J.; Li, M.; Lautens, M.
J. Am. Chem. Soc. 2007, 129, 15372. (c) Dohi, T.; Morimoto, K.; Kiyono,
Y.; Tohma, H.; Kita, Y. Org. Lett. 2005, 7, 537. (d) Yan, G.; Kuang, C.;
Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 1052. (e) Jia, X.; Yang, D.; Zhang,
S.; Cheng, J. Org. Lett. 2009, 11, 4716. (f) Dohi, T.; Morimoto, K.;
Takenaga, N.; Goto, A.; Maruyama, A.; Kiyono, Y.; Tohma, H.; Kita, Y.
J. Org. Chem. 2007, 72, 109. (g) Jia, X.; Yang, D.; Wang, W.; Luo, F.;
Cheng, J. J. Org. Chem. 2009, 74, 9470. (h) Lu, Z.; Hu, C.; Guo, J.; Li, J.;
Cui, Y.; Jia, Y. Org. Lett. 2010, 12, 480. (i) Do, H.-Q.; Daugulis, O. Org.
Lett. 2010, 12, 2517.
1
).
Our approach was initiated using cinnamyl bromide 1a
as the electrophile (Table 1). As we expected, (E)-3-phenyl-
-propenenitrile (2a) was detected in 3% yield when 1a was
2
treated with sodium azide in the presence of DDQ (2,3-
dichloro-5,6-dicyanobenzoquinone) and a catalytic amount
of TBAB refluxed in DCE (1,2-dichloroethane) for 12 h
(6) Other methods: (a) L u¨ cke, B.; Narayana, K. V.; Martin, A.; J a¨ hnisch,
K. AdV. Synth. Catal. 2004, 346, 1407. (b) Telvekar, V. N.; Patel, K. N.;
Kundaikar, H. S.; Chaudhari, H. K. Tetrahedron Lett. 2008, 49, 2213. (c)
Arote, N. D.; Bhalerao, D. S.; Akamanchi, K. G. Tetrahedron Lett. 2007,
(entry 1, Table 1). Considering that the presence of an
oxidant would probably affect the substitution step forming
the allyl azide intermediate, we tried to add the oxidant
subsequently. Gratifyingly, when DDQ was simply added
after the reaction mixture had stirred at room temperature
4
8, 3651. (d) Sasson, R.; Rozen, S. Org. Lett. 2005, 7, 2177. (e) Rudler,
H.; Denis, B. Chem. Commun. 1998, 2145. (f) Altamura, A.; Daccolti, L.;
Detomaso, A.; Dinoi, A.; Fiorentino, M.; Fusco, C.; Curci, R. Tetrahedron
Lett. 1998, 39, 2009. (g) Fernandez, R.; Gasch, C.; Lassaletta, J. M.; Llera,
J. M.; Vazquez, J. Tetrahedron Lett. 1993, 34, 141. (h) Nakao, Y.; Oda,
S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904. (i) Nakao, Y.; Yukawa,
T.; Hirata, Y.; Oda, S.; Satoh, J.; Hiyama, T. J. Am. Chem. Soc. 2006, 128,
(7) (a) Iida, S.; Ohmura, R.; Togo, H. Tetrahedron 2009, 65, 6257. (b)
Iida, S.; Togo, H. Synlett 2008, 11, 1639. (c) McCleverty, J. A.; Ninnes,
C. W.; Wolochowicz, I. J. Chem. Soc., Dalton Trans. 1986, 743. (d) Sato,
R.; Ityoh, K.; Itoh, K.; Nishina, H.; Goto, T.; Saito, M. Chem. Lett. 1984,
1913.
7
2
116. (j) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc.
007, 129, 2428. (k) Kojima, S.; Fukuzaki, T.; Yamakawa, A.; Murai, Y.
Org. Lett. 2004, 6, 3917. (l) Peppe, C.; Mello, P. A.; dasChagas, R. P. J.
Organomet. Chem. 2006, 691, 2335. (m) Tomioka, T.; Takahashi, Y.;
Vaughan, T. G.; Yanase, T. Org. Lett. 2010, 12, 2171. (n) Chiba, S.; Zhang,
L.; Ang, G. Y.; Hui, B. W.-Q. Org. Lett. 2010, 12, 2052.
(8) Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48,
7094.
Org. Lett., Vol. 12, No. 12, 2010
2889