STUDY OF THE PROCESS OF MECHANOCHEMICAL ACTIVATION
61
the same evolution observed in the material obtained by the
traditional solid-state reaction. Similarly, #uorites Bi VO
ACKNOWLEDGMENTS
ꢀ
ꢄ
and Bi MoO obtained from mechanical activated powders
The authors thank Ms. P. Begue for the synthesis of Bi O :MoO
ꢀ
ꢃ
ꢀ
ꢂ
ꢂ
products. This work has been funded by the Spanish CICYT (MAT97-
0711) and CAM (07N/0061/1998). TEM work has been carried out at the
Centro de Microscopma Electronica &&Luis Bru'' (Universidad Complutense
de Madrid, Spain).
transform on heating into the same Aurivillius phases ob-
tained when the material is produced by thermal activation
(24, 25). These results evidence not only that the mechanisms
of phase formation are di!erent for mechanical and for
thermal activation, but also that the structures obtained by
mechanoactivation can be reversed to the ones obtained by
traditional thermal activation. We have shown that the
combination of mechanical and thermal activation allows
the production of both new and previously reported phases
of the systems studied here.
REFERENCES
1. B. Aurivillius, Ark. Kemi. 1, 463}480 (1949).
2. A. F. van den Elzen and G. D. Rieck, Acta Crystallogr. B 29, 2436}2438
(1973).
3. A. A. Bush and Yu. N. Vanetsev, Russ. J. Inorg. Chem. 31(5), 769}771
(1986).
4. V. G. Osipyan, L. M. Savchenko, V. L. Elbakyan, and P. B. Avakyan,
Izv. Akad. Nauk SSSR Neorg. Mat. 23(3), 523}525 (1987).
5. I. H. Ismailzade, I. M. Aliyev, R. M. Ismailov, A. I. Alekberov, and
D. A. Rzayev, Ferroelectrics 22, 853}854 (1979).
6. D. A. Je!erson, J. M. Thomas, M. K. Uppal, and R. K. Grasselli,
J. Chem. Soc. Chem. Commun. 594}595 (1983).
7. K. Shantha and K. B. R. Varma, Solid State Ionics 99(3}4), 225}231 (1997).
8. P. B. Avakyan, M. D. Neresyan, and A. G. Merzhanov, Am. Ceram.
Soc. Bull. 75(2), 50}55 (1996).
9. K. Shantha and K. B. R. Varma, J. Mater. Res. 14(2), 476}486 (1999).
10. P. Millan, J. M. Rojo, and A. Castro, Bol. Soc. Esp. Cera& m. <idrio 37,
217}220 (1998).
11. P. Millan, J. M. Rojo, and A. Castro, Mater. Res. Bull. 35(6), 835}845
(2000).
5. CONCLUSIONS
An analysis of several mechanochemically activated n"1
Aurivillius oxides in a vibrating mill was carried out by
SEM, TEM, electron di!raction, and EDS. The mechanical
activation results in the formation of submicrometer
amorphous particles by the rupture and massive creation of
defects of the precursor particles. However, di!erent results
are induced by the mechanical activation, regardless of the
similar compositions and structure of the compositions
studied.
In the systems 2Bi O :V O and Bi O :MoO , evidence 12. F. Abraham, M. F. Debreuille-Gresse, G. Mairesse, and G. Nowog-
ꢀ ꢂ ꢀ ꢄ
ꢀ ꢂ
ꢂ
rocki, Solid State Ionics 28+30, 529}532 (1988).
13. S. Sorokina, R. Enjalbert, P. Baules, A. Castro, and J. Galy, J. Solid
State Chem. 125, 54}62 (1996).
14. P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt,
Solid State Ionics 89, 179}196 (1996).
of mechanosynthesis taking place as a result of the activa-
tion procedure was found. The energy introduced in the
system not only produces amorphous particles containing
all the elements, but also small crystallites of the "nal phases
are identi"ed. Further annealing of the product results in 15. M. E. Arroyo y de Dompablo, F. Garcma-Alvarado, and E. Moran,
Solid State Ionics 91, 273}278 (1996).
16. G. Mairesse, in &&Fast Ion Transport in Solids'' (B. Scrosati, Ed.),
p. 271. Kluwer Academic, Dordrecht, 1993.
17. K. R. Kendall, C. Navas, J. K. Thomas, and H. C. zur Loye, Chem.
Mater. 8, 642}649 (1996).
the complete crystallization of the particles. However, a sim-
ilarly processed powder of Bi O :VO produces syn-
ꢀ ꢂ
ꢀ
thesized particles only when annealed. Particles of VO do
ꢀ
not amorphize after the prolonged milling, the rupture of
the initial structure does not take place, and, as a conse- 18. K. Tkacova, &&Mechanical Activation of Minerals.'' Elsevier, Amster-
dam, 1989.
quence, mechanosynthesis is inhibited. Therefore, we con-
clude that mechanosynthesis is possible only when
amorphization of all the starting oxides is achieved.
Mechanochemical activation of these compounds pro-
19. V. V. Boldyrev, Solid State Ionics 63+65, 537}543 (1993).
20. J. J. Gilman, Science 274, 65 (1996).
21. J. M. Gonzalez-Calbet, J. Alonso., E. Herrero, and M. Vallet-Regm,
Solid State Ionics 101+103, 119}123 (1997).
duces either non-previously synthesized #uorites of Bi VO
22. P. Lacorre and R. Retoux, J. Solid State Chem. 132, 443}446 (1997).
23. K. Shantha and K. B. R. Varma, Mater. Sci. Eng. B 60, 66}75 (1999).
24. A. Castro, P. Millan, J. Ricote, and L. Pardo, J. Mater. Chem. 10,
767}771 (2000).
25. P. Begue, P. Millan, and A. Castro, Bol. Soc. Esp. Cera& m. <idrio 38(6),
558}562 (1999).
ꢀ
ꢄ
and Bi MoO , or a previously reported Aurivillius phase
ꢀ
ꢃ
ꢄ>
when one of the ions, V , cannot "t into any #uorite
structure. Even in this case, there is a novelty, the c-
Bi VO
ꢄꢅꢄ
phase is stable at room temperature. All this
demonstrates that the mechanisms of phase formation are 26. A. Castro, P. Millan, L. Pardo, and B. Jimenez, J. Mater. Chem. 9,
ꢀ
1313}1317 (1999).
di!erent for mechanical and for thermal activation. Further
annealing takes all these structures back to the ones ob-
tained by traditional thermal activation, which reveals how
27. G. J. Fan, F. Q. Guo, Z. Q. Hu, M. X. Quan, and K. Lu, Phys. Rev.
B 55(17), 11010}11013 (1997).
28. J. Wang, J. Xue, and D. Wan, Solid State Ionics 127, 169}175 (2000).
the structures obtained by mechanoactivation can be rever-
sed to the ones obtained in thermal cycles.
29. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B 25, 925}946
(1969).