Communication
For probing the reaction mechanism, a few control experi- acetate or water (2 mL) under open air. The reaction vessel was
capped and the mixture was allowed to stir at 80 °C (for 1,3-di-
ketones at room temperature) for 3–12 h. After the completion of
the reaction (monitored by TLC), the reaction mixture was
ments were performed (Scheme 6). Using a stoichiometric
amount of TBAI in the absence of TMSN , which furnished α-
3
iodo-β-keto ester 6 in 32 % yield, suggested an iodo derivative
as a possible intermediate. However, employing pre-made α-
quenched using saturated solution of Na S O and extracted with
2
2 3
ethyl acetate (3 × 15 mL). The combined organic layer was dried
with Na SO and concentrated under reduced pressure. The crude
iodo-β-keto ester 6, with TMSN failed to furnish the expected
3
2
4
product in either the presence or the absence of aq. TBHP. Reac-
tion in the presence of a radical inhibitor such as butylated
hydroxytoluene (BHT) or a radical quencher such as TEMPO un-
der the standard reaction conditions gave the azidated product
product was purified by silica gel flash column chromatography
using hexane/EtOAc to get the pure product.
Acknowledgments
2
a in lower yields of 33 and 38 %, respectively, suggesting a
radical pathway.
This work was supported by SERB (No.SB/S1/OC-56/2013), New
Based on these control experiments and the literature prece- Delhi, the Indian Institute of Science, and RL Fine Chem. We
[
12a,12b]
dence,
a plausible mechanism is proposed in Scheme 7. thank Dr. A. R. Ramesha (RL Fine Chem) for useful discussions.
An in situ reaction of TBAI and TBHP generates hypoiodite (III), J. D. thanks Council of Scientific and Industrial Research (CSIR),
which upon reaction with active methylene compounds forms New Delhi, for a fellowship.
the intermediate (IV). Further, the intermediate (IV) reacts with
TMSN to furnish the azidated product (2a). We believe that,
the hypernucleofugal ability of the intermediate (IV) formed
3
Keywords: Azides · Iodine · Keto esters · 1,3-Dicarbonyl
compounds · Synthetic methods
during the reaction drives the reaction for displacement by
[
16,17]
azide.
[
1] a) S. Bräse, K. Banert (Eds.), Organic Azides: Syntheses and Applications,
Wiley, Chichester, 2009; b) H. C. Kolb, K. B. Sharpless, Drug Discovery
Today 2003, 8, 1128; Reviews: c) J. E. Moses, A. D. Moorhouse, Chem. Soc.
Rev. 2007, 36, 1249; d) M. Meldal, C. W. Tornoe, Chem. Rev. 2008, 108,
2
952; e) F. Amblard, J. H. Cho, R. F. Schinazi, Chem. Rev. 2009, 109, 4207;
f) R. K. Iha, K. L. Wooley, A. M. Nystrom, D. J. Burke, M. J. Kade, C. Hawker,
Chem. Rev. 2009, 109, 5620; g) G. C. Tron, T. Pirali, R. A. Billington, P. L.
Canonico, G. Sorba, A. A. Genazzani, Med. Res. Rev. 2008, 28, 278; h) V. V.
Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed.
2002, 41, 2596; Angew. Chem. 2002, 114, 2708; i) C. W. Tornoe, C. Chris-
tensen, M. Meldal, J. Org. Chem. 2002, 67, 3057; j) J.-F. Lutz, Angew. Chem.
Int. Ed. 2007, 46, 1018; Angew. Chem. 2007, 119, 1036; k) X. Huang, T. M.
Bergsten, J. T. Groves, J. Am. Chem. Soc. 2015, 137, 5300.
[
2] a) S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharp-
less, Angew. Chem. Int. Ed. 2005, 44, 3275; Angew. Chem. 2005, 117, 3339;
b) C. J. Li, T.-H. Chan, Organic reactions in aqueous media, Wiley, New
York, 1997; c) P. A. Grieco (Ed.), Organic Synthesis in Water, Blackie, Lon-
don, 1998; d) U. M. Lindström (Ed.), Organic Reactions in Water: Principles,
Strategies and Applications, Blackwell, Oxford, 2007; e) U. M. Lindström,
Chem. Rev. 2002, 102, 275; f) J.-I. Yoshida, K. Itami, Chem. Rev. 2002, 102,
Scheme 7. Plausible mechanism.
3
693; g) C. J. Li, Chem. Rev. 1993, 93, 2023; h) C. J. Li, M.-O. Simon, Chem.
Conclusions
Soc. Rev. 2012, 41, 1415.
3] a) T. Mukaiyama, K. Kuroda, Y. Maruyama, Y. Hayashi, Chem. Lett. 2008,
[
In conclusion, we have developed an operationally simple, mild,
efficient, and environmentally benign method for azidation of
α-substituted β-keto esters, amides, and ketones leading to the
formation of tertiary azides in high yields. This oxidative azid-
ation is catalyzed by tetrabutylammonium iodide and the reac-
tion has been performed using aq. TBHP as an oxidant. We
propose to use chiral ammonium iodides as catalysts to intro-
duce chirality in the molecule and such work is under progress
in our laboratory.
3
7, 1072; b) T. Mukaiyama, K. Kuroda, Y. Maruyama, Heterocycles 2010,
80, 63; c) J. E. Green, D. M. Bender, S. Jackson, M. J. O'Donnell, J. M.
McCarthy, Org. Lett. 2009, 11, 807 and references cited therein.
4] T. Patonay, K. Konya, E. Juhasz-Toth, Chem. Soc. Rev. 2011, 40, 2797.
5] a) S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed.
[
[
2
005, 44, 5188; Angew. Chem. 2005, 117, 5320; b) Recent examples for
SN2 displacements; c) K. Shibatomi, Y. Soga, A. Narayama, I. Fujisawa, S.
Iwasa, J. Am. Chem. Soc. 2012, 134, 9836; d) N. Halland, A. Braunton, S.
Bachmann, M. Marigo, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126,
4
790; e) G. P. Miller, E. T. Kool, J. Org. Chem. 2004, 69, 2404; f) Y. Chevolot,
C. Bouillon, S. Vidal, F. Morvan, A. Meyer, J.-P. Cloarec, A. Jochum, J.-P.
Praly, J.-J. Vasseur, E. Souteyrand, Angew. Chem. Int. Ed. 2007, 46, 2398;
Angew. Chem. 2007, 119, 2450; g) E. A. Appel, F. Biedermann, U. Rauwald,
S. T. Jones, J. M. Zayed, O. A. Scherman, J. Am. Chem. Soc. 2010, 132,
Experimental Section
1
4251.
CAUTION! It is highly important to take sufficient precautions while
using azides.
[6] a) D. A. Evans, T. C. Britton, J. Am. Chem. Soc. 1987, 109, 6881; b) L.
Benati, G. Calestani, D. Nanni, P. Spagnolo, J. Org. Chem. 1998, 63, 4679;
c) L. Benati, D. Nanni, P. Spagnolo, J. Org. Chem. 1999, 64, 5132; d) D.
Kashinath, G. Budin, R. Baati, S. Meunier, A. Wagner, Tetrahedron Lett.
Typical Experimental Procedure: TBAI (0.1 equiv., 10 mg,
0.026 mmol) and aq. TBHP (70 % solution in water, 2 equiv.,
2009, 50, 5379; e) K. A. Lyssenko, D. A. Lenevb, R. G. Kostyanovsky, Tetra-
0
.52 mmol, 0.07 mL) were added to a mixture of 1,3-dicarbonyl
hedron 2002, 58, 8525; f) F. I. Winkler, D. Stah, J. Am. Chem. Soc. 1978,
100, 6780; g) J. E. Green, D. M. Bender, S. Jackson, M. J. O'Donnell, J. R.
compound (0.26 mmol) and TMSN (2 equiv., 0.52 mmol) in ethyl
3
Eur. J. Org. Chem. 2016, 447–452
www.eurjoc.org
451
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim