T. Oyamada et al. / Chemical Physics Letters 421 (2006) 295–299
299
104
103
102
101
100
10-1
10-2
10-3
550 nm originates from the formation of TPPy dimer
states. We examined other TPPy derivatives having various
substituents and observed that the shift of the PL spectrum
depends heavily on the substituent. Comparing the substi-
(a)
TPPy(A)
TPPy(B)
tuent effects would provide
discussion.
a more comprehensive
10-1
10-2
10-3
This work was supported by the Integrated industry aca-
demia partnership (IIAP), Kyoto University International
Innovation Center. We especially thank Prof. Katsumi
Tokumaru for his insightful advice.
TPPy(B)
1x10-4
1x10-5
10-6
TPPy(A)
References
100
101
102
103
104
Current density (mA/cm2)
10-7
[1] C.W. Tang, S.A. Van Slyke, Appl. Phys. Lett. 51 (1987) 913.
[2] C. Adachi, M.A. Baldo, S.R. Forrest, M.E. Thompson, Appl. Phys.
Lett. 77 (2000) 904.
100
101
Volt (V)
102
[3] T. Oyamada, S. Murase, T. Tominaga, C. Maeda, H. Sasabe, C.
Adachi, Appl. Phys. Lett. 86 (2005) 033503.
[4] Z. Bao, A. Dodabalapur, A.J. Lovinger, Appl. Phys. Lett. 69 (1996)
4108.
(b)
1
[5] A.R. Brown, C.P. Jarrett, D.M. de Leeeuw, M. Matters, Synth. Met.
88 (1997) 37.
TPPy(A)
TPPy(B)
[6] D.X. Wang, Y. Tanaka, M. Iizuka, S. Kuniyoshi, K. Kudo, K.
Tanaka, Jpn. J. Appl. Phys. 38 (1999) 256.
[7] A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von
Seggern, Phys. Rev. Lett. 91 (2003) 157406.
[8] T. Oyamada, S. Okuyama, N. Shimoji, K. Matsushige, H. Sasabe, C.
Adachi, Appl. Phys. Lett. 86 (2005) 093505.
[9] T. Oyamada, H. Uchiuzou, Y. Oku, N. Shimoji, K. Matsushige, H.
Sasabe, C. Adachi, J. Appl. Phys. 98 (2005) 074506-1.
[10] L. Ma, J. Liu, S. Pyo, Y. Yang, Appl. Phys. Lett. 80 (2002) 362.
[11] X.-C. Gao, D.-C. Zou, K. Fujita, T. Tsutsui, Appl. Phys. Lett. 81
(2002) 4508.
0
350
400
450
500
550
600
650
700
[12] T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, C. Adachi, Appl.
Phys. Lett. 83 (2003) 1252.
Wavelength (nm)
[13] C.W. Tang, Appl. Phys. Lett. 48 (1986) 183.
[14] Z.H. Kafafi, Proc. SPIE. (2002) 4465.
[15] B.P. Rand, P. Peumans, S.R. Forrest, J. Appl. Phys. 96 (2004) 7519.
[16] Y.-Y. Lin, D.J. Dundlach, S. Nelson, T.N. Jackson, IEEE Electr.
Dev. Lett. 18 (1997) 606.
Fig. 4. (a) Current density (J) depending on voltage (V) and external
quantum efficiency (gext) and current density (J) characteristics in OLEDs
using the TPPy powders (A and B) as the deposition sources. (b) EL
spectra in the OLEDs with the TPPy powders (A and B).
[17] Y. Inoue, S. Tokito, K. Ito, T. Suzuki, J. Appl. Phys. 95 (2004) 5795.
[18] V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T.
Someya, M.E. Gershenson, J.A. Rogers, Science 303 (2004) 1644.
[19] H.J. Wagner, R.O. Loutfy, C.K. Hshiao, J. Mat. Sci. 17 (1982) 2781.
[20] Y. Kawamura, H. Sasabe, C. Adachi, Jpn. J. Appl. Phys. 43 (2004)
7729.
[21] M. Ofuji, K. Inaba, K. Omote, H. Hoshi, Y. Takanishi, K. Ishikawa,
H. Ta·kezoe, Jpn. J. Appl. Phys., Part I 41 (2002) 5467.
[22] Ch. Kloc, P.G. Simpkins, T. Siegrist, R.A. Laudise, J. Cryst. Growth
182 (1981) 416.
dimer sites should form localized states within the HOMO
and LUMO levels and contribute to increasing direct car-
rier injection from the cathode, improving exciton genera-
tion efficiency. These electrical measurements are consistent
with the PL characteristics, supporting our conclusions.
In summary, we demonstrated unique PL characteristics
in TPPy powders and deposited films. The thermal anneal-
ing and recrystallization reversibly converted the PL spec-
tra. We concluded that the fluorescence around 500–
[23] H. Sumi, Chem. Phys. 130 (1989) 433.