Angewandte Chemie International Edition
10.1002/anie.201810149
COMMUNICATION
D-A intermolecular distance of 3.54 Å along b axis (Figure 3c). Acknowledgements
There are almost no - interactions between adjacent CNDSB
molecules, whereas the two types of intermolecular C-H···N
This work was supported by the Natural Science Foundation of
China (51773080, 21674041, 51573068, 21725304), Program
for Changbaishan Scholars of Jilin Province, Jilin Province
project (20160101305JC), and the “Talents Cultivation
Program“ of Jilin University.
interactions (Figure 3d, Figure S13 and S14) result in unique
mixed alterative molecular columns. These relatively weak
intermolecular interactions and the intended loosely packed
molecular arrangement are necessary for a stimuli responsive
feature.
Putting all the experimental data together enable us to draw a
clear overall picture of the unique piezochromic luminescent
behavior of CT-R co-crystal (Figure 4). Upon the grinding, the
loosely stacking molecular columns in CT-R may happen to slide
along the molecular stretching orientation since the strong and
directional C-H···N interactions within the molecular chains,
where the slide direction between adjacent molecular columns
could be opposite due to the anisotropic shear force. A structural
reorganization thus can be realized from the segregated-stack to
the mixed-stack, resulting in the weaken - and CT interactions
among CNDSB and TCNB. Accordingly, the observed enhanced
and blue shifted emission of the ground samples possibly
originated from integrating of the weaken exciton coupling
between the pairs of neighboring CNDSB and CT transition
strength. On the other hand, the hydrostatic pressure induces
molecules to form tighter packing structure,[3a, 13] which was
demonstrated through the optimized lattice parameters of CT-R
under the external stress calculated by the CASTEP module
Keywords: anisotropic grinding • donor−acceptor co-crystal •
isotropic compression • molecular rearrangement • piezochromic
materials
[
1]
a) Y. Sagara, T. Kato, Nat. Chem. 2009, 1, 605-610; b) Y. Sagara, S.
Yamane, M. Mitani, C. Weder, T. Kato, Adv. Mater. 2016, 28, 1073–
1
095; c) Y. Wang, X. Tan, Y. Zhang, S. Zhu, I. Zhang, B. Yu, K. Wang,
B. Yang, M Li, B. Zou, S. Zhang, J. Am. Chem. Soc. 2015, 137,
31−939.
9
[2]
a) T. Seki, Y. Takamatsu, H. Ito, J. Am. Chem. Soc. 2016, 138, 6252-
6260; b) Y. Dong, B. Xu, J. Zhang, X. Tan, L. Wang, J. Chen, H. Lv, S.
Wen, B. Li, L. Ye, B. Zou, W. Tian, Angew. Chem. 2012, 124, 10940-
10943; Angew. Chem. Int. Ed. 2012, 51, 10782 –10785; c) Y. Dong, J.
Zhang, X. Tan, L. Wang, J. Chen, B. Li, L. Ye, B. Xu, B. Zou, W. Tian, J.
Mater. Chem. C 2013, 1, 7554-7559; d) L. Bai, P. Bose, Q. Gao, Y. Li,
R. Ganguly, Y. Zhao, J. Am. Chem. Soc. 2017, 139, 436-441. e) B. Xu,
Y. Mu, Z. Mao, Z. Xie, H. Wu, Y. Zhang, C. Jin, Z. Chi, S. Liu, J. Xu, Y.-
C. Wu, P.-Y. Lu, A. Lienc, M. R. Bryce, Chem. Sci., 2016, 7, 2201-2206.
a) K. Nagura, S. Saito, H. Yusa, H. Yamawaki, H.Fujihisa, H. Sato, Y.
Shimoikeda, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135,
[3]
(
Table S4 and S5). The interfacial distance between the mean
10322−10325; b) L. Wang, K. Wang, B. Zou, K. Ye , H. Zhang , Y.
planes of D-A molecules (d ) and D-D molecules (d ) becomes
1
2
Wang, Adv. Mater. 2015, 27, 2918–2922; c) J. Wu, Y. Cheng, J. Lan, D.
Wu, S. Qian, L. Yan, Z. He, X. Li, K. Wang, B. Zou, J. You, J. Am.
Chem. Soc. 2016, 138, 12803–12812.
much shorter from 3.44 Å to 3.03 Å and 3.33 Å to 2.95 Å,
respectively. It suggests that the hydrogen bonded lattice is
deformed, which reduces the void space among the adjacent
moieties. As a result of the closer proximity, the enhanced -
and CT interactions is formed without changing segregated
stacking mode, which is likely the origin of the red-shifted
emission under isotropic compression.
[
4]
a) T. Shimizu , M. Masuda , H. Minamikawa , Chem. Rev. 2005 , 105 ,
1401; b) B. M. Rosen , C. J. Wilson , D. A. Wilson , M. Peterca , M. R.
Imam , V. Percec , Chem. Rev. 2009 , 109 , 6275;c) T. Aida , E. W.
Meijer , S. I. Stupp , Science 2012 , 335 , 813 .
[5]
a) D. Yan, A. Delori, G. O. Lloyd, T. Friscic, G. M. Day, W. Jones, J. Lu,
M. Wei, D. G. Evans, X. Duan, Angew. Chem. 2011, 123, 12691 –
In summary, we have successfully demonstrated the distinct
luminescent responsive feature to anisotropic grinding and
isotropic compression based on a donor-acceptor co-crystal CT-
R. The intermolecular CT, -, C-H···N interactions are the
driving forces for self-assembly and result in the loosely
segregated packing mode. Grinding of the crystals leads to a
structural rearrangement from segregated-stack to mixed-stack
in which - and CT interactions are weakened and hence
results in a blue-shifted and enhanced emission. In contrast, the
hydrostatic pressure leads to a remarkable red-shifted emission,
originating from the closer arrangement and enhanced - and
CT interactions. These structural deformations of the non-
covalent interaction network upon mechanical stress were fully
confirmed by both experimental and theoretical studies. Hence,
the clear distinction of piezochromic luminescent responses
through the structural reorganization is achieved using the co-
crystal approach by changing the solid state and the types of the
mechanical forces. Furthermore, we anticipate that the rational
molecular design and crystal engineering strategy presented
here might not only provide important insight for the
supramolecular control of intermolecular interaction by external
stimuli, but the discrimination between anisotropic grinding and
isotropic compression would also accelerate and enrich the
chemistry of the piezochromism.
1
2694; Angew. Chem. Int. Ed. 2011, 50, 12483 –12486; b) T. Ono, M.
Sugimoto, Y. Hisaeda, J. Am. Chem. Soc. 2015, 137, 9519−9522; c) P.
P. Kapadia, L. R. Ditzler, J. Baltrusaitis, D.C. Swenson, A. V. Tivanski,
F. C. Pigge, J. Am. Chem. Soc. 2011, 133, 8490–8493; d) Y. Liu, S. Ma,
B. Xu, W. Tian, Faraday Discuss. 2017, 196, 219-229.
[
6]
7]
a) S. K. Park, I. Cho, J. Gierschner, J. H. Kim, J. H. Kim, J. E. Kwon, O.
K. Kwon, D. R. Whang, J.-H. Park, B.-K. An, and S. Y. Park, Angew.
Chem. 2016, 128, 211-215; Angew. Chem. Int. Ed. 2016, 55, 203-207;
b) G. Fan, D. Yan, Sci. Rep. 2014, 4, 4933.
[
a) M. Wykes, S. K. Park, S. Bhattacharyya, S. Varghese, J. E. Kwon, D.
R. Whang, I. Cho, R. Wannemacher, L. Lꢀer, S. Y. Park, J. Gierschner,
J. Phys. Chem. Lett. 2015, 6, 3682−3687; b) Y. Wang, W. Zhu, W. Du,
X. Liu, X. Zhang, H. Dong, W. Hu, Angew. Chem. 2018, 130, 4027-
4031; Angew. Chem. Int. Ed. 2018, 57, 3963-3967.
[8]
a) A. Heller, J. Chem. Phys. 1964, 40, 2839-2950; b) S. Ma, J. Zhang, J.
Qian, J. Chen, Bin Xu, W. Tian, Adv. Optical Mater. 2015, 3, 763-768.
a) S. K. Park, S. Varghese, J. H. Kim, S.-J. Yoon, O. K. Kwon, B.-K. An,
J. Gierschner, S. Y. Park, J. Am. Chem. Soc. 2013, 135, 4757−4764; b)
W. Zhu, R. Zheng, X. Fu, H. Fu, Q. Shi, Y. Zhen, H. Dong, W. Hu,
Angew. Chem. 2015, 127, 6889-6893; Angew. Chem. Int. Ed. 2015, 54,
[9]
6785-6789.
[
10] a) Y. L. Lei, L. S. Liao, S. T. Lee, J. Am. Chem. Soc. 2013, 135, 3744 –
3747; b) Y. L. Lei, Y. Jin, D. Y. Zhou, W. Gu, X. B. Shi, L. S. Liao, S.-T.
Lee, Adv. Mater. 2012, 24, 5345 – 5351; c) R. J. Dillon, C. J. Bardeen,
J. Phys. Chem. A 2011, 115, 1627-1633.
This article is protected by copyright. All rights reserved.