H. Wu et al.
structure of 2 may be considered distorted trigonal bipyramidal, with
3 having an intermediate coordination geometry. Electrochemical
studies show quasi-reversible redox behavior for 1. Furthermore,
1–3 exhibit good hydroxyl radical scavenging activity, and 1 and 2
display excellent antioxidant activity for superoxide radical. These
findings clearly indicate that transition metal complexes with benz-
imidazole have many potential applications, which warrants further
in vivo experiments and perhaps pharmacological assays.
Acknowledgments
This research was supported by the National Natural Science
Foundation of China (grant no. 21367017), the Fundamental
Research Funds for the Gansu Province Universities (212086),
Natural Science Foundation of Gansu Province (grant no.
1212RJZA037) and ‘Qing Lan’ Talent Engineering Funds for
Lanzhou Jiaotong University.
References
[1] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi, J. Am.
Chem. Soc. 2005, 127, 1504.
[2] H. Zheng, E. Q. Gao, Z. M. Wang, C. H. Yan, M. Kurmoo, Inorg. Chem.
2005, 44, 862.
[3] J. Fan, H. F. Zhu, T. Okamura, W. Y. Sun, W. X. Tang, N. Ueyama, Chem.
Eur. J. 2003, 9, 4724.
[4] S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853.
[5] E. Bouwman, J. Reedijk, Coord. Chem. Rev. 2005, 249, 1555.
[6] X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed. 2006,
45, 1557.
[7] A. Tamayo, J. Casabó, L. Escriche, P. González, C. Lodeiro, A. C. Rizzi,
C. D. Brondino, M. C. G. Passeggi, R. Kivekals, R. Sillanpala, Inorg.
Chem. 2007, 46, 5665.
Figure 6. Superoxideradicalscavengingeffectforcomplexes(a)2and(b)1.
[8] S. X. Wang, S. Y. Yu, Q. H. Luo, Q. Y. Wang, J. Q. Shi, Q. J. Wu, Transition
better scavenging activity than mannitol and vitamin C. The lower
IC50 values observed in antioxidant assays demonstrate 1–3 have
potential to be applied as scavengers to eliminate radicals.
Met. Chem. 1994, 19, 205.
[9] D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev. 2003, 103, 893.
[10] E. Lukevics, P. Arsenyan, I. Shestakova, I. Domracheva, A. Nesterova,
O. Pudova, Eur. J. Med. Chem. 2001, 36, 507.
[11] L. Garuti, M. Roberti, E. D. Clercq, Bioorg. Med. Chem. Lett. 2002, 12, 2707.
[12] A. Gellis, H. Kovacic, N. Boufatah, P. Vanelle, Eur. J. Med. Chem. 2008,
43, 1858.
Superoxide radical scavenging activity
As a significant assay of antioxidant activity, the superoxide
[13] Ö. Ö. Guven, T. Erdogan, H. Goker, S. Yildiz, Bioorg. Med. Chem. Lett.
2007, 17, 2233.
[14] K. Kopanska, A. Najda, Z. Justyna, L. Chomicz, J. Piekarczyk, P. Myjak,
M. Bretner, Bioorg. Med. Chem. 2004, 12, 2617.
[15] S. M. Sondhi, S. Rajvanshi, M. Johar, N. Bharti, A. Azam, A. K. Singh, Eur. J.
Med. Chem. 2002, 37, 835.
•
radical (O2ꢁ ) scavenging activity of 1–3 has been investigated.[39]
As can be seen from Fig. 6, the IC50 values are (2.23 0.081) × 10ꢁ7
and (7.09 0.037) × 10ꢁ7 M for complexes 1 and 2, respectively.
Therefore, 1 and 2 demonstrate good SOD activities with
respect to the standard SOD mimic manganese complexes
(EUK-8 IC50 =1.3×10ꢁ6 M and EUK-189 IC50 = 1.4× 10ꢁ6 M)[40] and
[16] H. Y. Liu, H. Wu, J. Yang, Y. Y. Liu, B. Liu, Y. Y. Liu, J. F. Ma, Cryst. Growth
Des. 2011, 11, 2920.
[17] H. L. Wu, J. K. Yuan, Y. Bai, G. L. Pan, H. Wang, J. Kong, X. Y. Fan, H. M. Liu,
Dalton Trans. 2012, 41, 8829.
the standard SOD mimic copper complex (IC50 =2.6×10ꢁ5 M)[41]
;
[18] H. L. Wu, B. Liu, F. Kou, F. Jia, J. K. Yuan, Y. Bai, J. Chin. Chem. Soc. Taip.
3 does not have activity. We find that the order of the suppression
2012, 5, 836.
•
ratio of the tested compounds for Oꢁ2 is 1 > 2, consistent with
[19] R. Cariou, J. J. Chirinos, V. C. Gibson, G. Jacobsen, A. K. Tomov,
G. J. P. Britovsek, A. J. P. White, Dalton Trans. 2010, 39, 9039.
[20] R. Barbehenn, T. Dodick, U. Poopat, B. Spencer, Arch. Insect Biochem.
Physiol. 2005, 60, 32.
[21] C. P. Tan, J. Liu, L. M. Chen, S. Shi, L. N. Ji, J. Inorg. Biochem. 2008,
102, 1644.
the electrochemical studies. The result indicates that complexes
1 and 2 exhibit good superoxide radical scavenging activity
and may be inhibitors to scavenge Oꢁ2 in vivo which merits
•
further investigation.
[22] Z. Y. Guo, R. E. Xing, S. Liu, H. H. Yu, P. B. Wang, C. P. Li, P. C. Li, Bioorg.
Med. Chem. Lett. 2005, 15, 4600.
[23] X. Y. Le, S. R. Liao, X. P. Liu, X. L. Feng, J. Coord. Chem. 2006, 59, 985.
[24] Q. H. Luo, Q. Lu, A. B. Dai, L. G. Huang, J. Inorg. Biochem. 1993, 51, 655.
[25] Bruker, APEX2, SAINT, Bruker AXS Inc., Madison, 2006.
[26] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
[27] H. L. Wu, H. C. Huang, J. K. Yuan, F. Kou, G. S. Chen, B. B. Jia, Y. Yang,
Y. L. Lan, Z. Naturforsch. 2010, 65b,1334.
[28] R. Bakshi, P. Mathur, Inorg. Chim. Acta 2010, 363, 3477.
[29] F. Z. C. Fellah, J. P. Costes, C. Duhayon, J. C. Daran, J. P. Tuchagues,
Polyhedron 2010, 29, 2111.
Conclusions
The Etbba ligand and its complexes have been synthesized and
characterized. The geometries of 1–3 were analyzed through
single-crystal X-ray diffraction and shown to have Cl2N3 donor sets.
The coordination environment of the Cu(II) atom in 1 can be de-
scribed as distorted square-based pyramidal, while the geometric
wileyonlinelibrary.com/journal/aoc
Copyright © 2015 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. (2015)